Linear Second Order ODE/x^2 y'' + 3 x y' + 10 y = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad x^2 y + 3 x y' + 10 y = 0$

has the general solution:

$y = \dfrac 1 x \paren {C_1 \map \cos {\ln x^3} + C_2 \map \sin {\ln x^3} }$


Proof

$(1)$ is an instance of the Cauchy-Euler Equation:

$x^2 y + p x y' + q y = 0$

where:

$p = 3$
$q = 10$


By Conversion of Cauchy-Euler Equation to Constant Coefficient Linear ODE, this can be expressed as:

$\dfrac {\d^2 y} {\d t^2} + \paren {p - 1} \dfrac {\d y} {\d t^2} + q y = 0$

by making the substitution:

$x = e^t$


Hence $(1)$ can be expressed as:

$(2): \quad \dfrac {\d^2 y} {\d t^2} + 2 \dfrac {\d y} {\d t^2} + 10 y = 0$


It can be seen that $(2)$ is a constant coefficient homogeneous linear second order ODE.


From Linear Second Order ODE: $y + 2 y' + 10 y = 0$, this has the general solution:

\(\ds y\) \(=\) \(\ds e^{-t} \paren {C_1 \cos 3 t + C_2 \sin 3 t}\)
\(\ds \) \(=\) \(\ds \dfrac 1 x \paren {C_1 \cos 3 t + C_2 \sin 3 t}\) substituting $x = e^t$
\(\ds \) \(=\) \(\ds \dfrac 1 x \paren {C_1 \map \cos {3 \ln x} + C_2 \map \sin {3 \ln x} }\) substituting $t = \ln x$
\(\ds \) \(=\) \(\ds \dfrac 1 x \paren {C_1 \map \cos {\ln x^3} + C_2 \map \sin {\ln x^3} }\)

$\blacksquare$


Sources