Linear Second Order ODE/x^2 y'' + x y' - y = 0/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad x^2 y + x y' - y = 0$

has the general solution:

$y = C_1 x + \dfrac {C_2} x$


Proof

The particular solution:

$y_1 = x$

can be found by inspection.


Let $(1)$ be written as:

$(2): \quad y + \dfrac {y'} x - \dfrac y {x^2} = 0$

which is in the form:

$y + \map P x y' + \map Q x y = 0$

where:

$\map P x = \dfrac 1 x$
$\map Q x = \dfrac 1 {x^2}$


From Particular Solution to Homogeneous Linear Second Order ODE gives rise to Another:

$\map {y_2} x = \map v x \, \map {y_1} x$

where:

$\ds v = \int \dfrac 1 { {y_1}^2} e^{-\int P \rd x} \rd x$

is also a particular solution of $(1)$.


We have that:

\(\ds \int P \rd x\) \(=\) \(\ds \int \frac 1 x \rd x\)
\(\ds \) \(=\) \(\ds \ln x\)
\(\ds \leadsto \ \ \) \(\ds e^{-\int P \rd x}\) \(=\) \(\ds e^{-\ln x}\)
\(\ds \) \(=\) \(\ds \frac 1 x\)


Hence:

\(\ds v\) \(=\) \(\ds \int \dfrac 1 { {y_1}^2} e^{-\int P \rd x} \rd x\) Definition of $v$
\(\ds \) \(=\) \(\ds \int \dfrac 1 {x^2} \frac 1 x \rd x\)
\(\ds \) \(=\) \(\ds \int \dfrac {\d x} {x^3}\)
\(\ds \) \(=\) \(\ds -\dfrac 1 {2 x^2}\)


and so:

\(\ds y_2\) \(=\) \(\ds v y_1\) Definition of $y_2$
\(\ds \) \(=\) \(\ds x \paren {-\dfrac 1 {2 x^2} }\)
\(\ds \) \(=\) \(\ds -\dfrac 1 {2 x}\)


From Two Linearly Independent Solutions of Homogeneous Linear Second Order ODE generate General Solution:

$y = C_1 x + k \paren {-\dfrac 1 {2 x} }$

where $k$ is arbitrary.

Setting $C_2 = -\dfrac k 2$ yields the result:

$y = C_1 x + \dfrac {C_2} x$

$\blacksquare$


Sources