Linear Second Order ODE/x^2 y'' - 2 x y' + 2 y = 0/y(1) = 3, y'(1) = 5

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad x^2 y - 2 x y' + 2 y = 0$

with initial conditions:

\(\ds \map y 1\) \(=\) \(\ds 3\)
\(\ds \map {y'} 1\) \(=\) \(\ds 5\)

has the particular solution:

$y = x + 2 x^2$


Proof

From Linear Second Order ODE: $x^2 y - 2 x y' + 2 y = 0$, the general solution of $(1)$ is:

$y = C_1 x + C_2 x^2$

Differentiating with respect to $x$:

$y' = C_1 + 2 C_2 x$


Thus for the initial conditions:

\(\ds \map y 1\) \(=\) \(\ds C_1 \times 1 + C_2 \times 1^2\)
\(\ds \) \(=\) \(\ds 3\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C_1 + C_2\) \(=\) \(\ds 3\)


and:

\(\ds \map {y'} 1\) \(=\) \(\ds C_1 + 2 C_2 \times 1\)
\(\ds \) \(=\) \(\ds 5\)
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C_1 + 2 C_2\) \(=\) \(\ds 5\)
\(\ds \leadsto \ \ \) \(\ds C_2\) \(=\) \(\ds 2\) $(3) - (2)$
\(\ds \leadsto \ \ \) \(\ds C_1 + 2\) \(=\) \(\ds 3\) substituting for $C_2$ in $(2)$
\(\ds \leadsto \ \ \) \(\ds C_1\) \(=\) \(\ds 1\)

Hence the result.

$\blacksquare$


Sources