Linear Second Order ODE/y'' + 2 y' + y = x exp -x

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y + 2 y' + y = x e^{-x}$

has the general solution:

$y = e^{-x} \paren {C_1 + C_2 x + \dfrac {x^3} 6}$


Proof

It can be seen that $(1)$ is a nonhomogeneous linear second order ODE in the form:

$y + p y' + q y = \map R x$

where:

$p = 2$
$q = 1$
$\map R x = x e^{-x}$


First we establish the solution of the corresponding constant coefficient homogeneous linear second order ODE:

$y + 2 y' + y = 0$

From Linear Second Order ODE: $y + 2 y' + y = 0$, this has the general solution:

$y_g = \paren {C_1 + C_2 x} e^{-x}$


It remains to find a particular solution $y_p$ to $(1)$.


We have that:

$\map R x = x e^{-x}$

and so from the Method of Undetermined Coefficients for Product of Polynomial and Exponential, we assume a solution:

\(\ds y_p\) \(=\) \(\ds e^{-x} \paren {A_1 x^3 + A_2 x^2 + A_3 x + A_4}\)
\(\ds \leadsto \ \ \) \(\ds {y_p}'\) \(=\) \(\ds -e^{-x} \paren {A_1 x^3 + A_2 x^2 + A_3 x + A_4} + e^{-x} \paren {3 A_1 x^2 + 2 A_2 x + A_3}\)
\(\ds \) \(=\) \(\ds e^{-x} \paren {-A_1 x^3 + \paren {3 A_1 - A_2} x^2 + \paren {2 A_2 - A_3} x + A_3 - A_4}\)
\(\ds \leadsto \ \ \) \(\ds {y_p}\) \(=\) \(\ds -e^{-x} \paren {-A_1 x^3 + \paren {3 A_1 - A_2} x^2 + \paren {2 A_2 - A_3} x + A_3 - A_4} + e^{-x} \paren {-3 A_1 x^2 + 2 \paren {3 A_1 - A_2} x + \paren {2 A_2 - A_3} }\)
\(\ds \) \(=\) \(\ds e^{-x} \paren {A_1 x^3 + \paren {-6 A_1 + A_2} x^2 + \paren {6 A_1 - 4 A_2 + A_3} x + 2 A_2 - 2 A_3 + A_4}\)


Substituting in $(1)$:

\(\ds \) \(\) \(\ds e^{-x} \paren {A_1 x^3 + \paren {-6 A_1 + A_2} x^2 + \paren {6 A_1 - 4 A_2 + A_3} x + 2 A_2 - 2 A_3 + A_4}\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds 2 e^{-x} \paren {-A_1 x^3 + \paren {3 A_1 - A_2} x^2 + \paren {2 A_2 - A_3} x + A_3 - A_4}\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds e^{-x} \paren {A_1 x^3 + A_2 x^2 + A_3 x + A_4}\)
\(\ds \) \(=\) \(\ds x e^{-x}\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds e^{-x} \paren {A_1 x^3 + \paren {-6 A_1 + A_2} x^2 + \paren {6 A_1 - 4 A_2 + A_3} x + \paren {2 A_2 - 2 A_3 + A_4} }\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds e^{-x} \paren {-2 A_1 x^3 + \paren {6 A_1 - 2 A_2} x^2 + \paren {4 A_2 - 2 A_3} x + \paren {2 A_3 - 2 A_4} }\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds e^{-x} \paren {A_1 x^3 + A_2 x^2 + A_3 x + A_4}\)
\(\ds \) \(=\) \(\ds x e^{-x}\)


Hence by equating coefficients:

\(\ds A_1 - 2 A_1 + A_1\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds 0\)
\(\ds \paren {-6 A_1 + A_2} + \paren {6 A_1 - 2 A_2} + A_2\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds 0\)
\(\ds \paren {6 A_1 - 4 A_2 + A_3} + \paren {4 A_2 - 2 A_3} + A_3\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds 6 A_1\) \(=\) \(\ds 1\)
\(\ds \paren {2 A_2 - 2 A_3 + A_4} + \paren {2 A_3 - 2 A_4} + A_4\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds A_2\) \(=\) \(\ds 0\)


So from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution:

$y = y_g + y_p = e^{-x} \paren {C_1 + C_2 x + \dfrac {x^3} 6}$

$\blacksquare$


Sources