Linear Second Order ODE/y'' + y = 0/y(0) = 2, y'(0) = 3

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y + y = 0$

with initial conditions:

$\map y 0 = 2$
$\map {y'} 0 = 3$

has the particular solution:

$y = 3 \sin x + 2 \cos x$


Proof

From Linear Second Order ODE: $y + y = 0$, the general solution of $(1)$ is:

$y = C_1 \sin x + C_2 \cos x$

Differentiating with respect to $x$:

$y' = C_1 \cos x - C_2 \sin x$


Thus for the initial conditions:

\(\ds \map y 0\) \(=\) \(\ds C_1 \sin 0 + C_2 \cos 0\)
\(\ds \) \(=\) \(\ds 2\)
\(\ds \leadsto \ \ \) \(\ds C_1 \times 0 + C_2 \times 1\) \(=\) \(\ds 2\) Sine of Zero is Zero, Cosine of Zero is One
\(\ds \leadsto \ \ \) \(\ds C_2\) \(=\) \(\ds 2\)


and:

\(\ds \map {y'} 0\) \(=\) \(\ds C_1 \cos 0 - C_2 \sin 0\)
\(\ds \) \(=\) \(\ds 2\)
\(\ds \leadsto \ \ \) \(\ds C_1 \times 1 - C_2 \times 0\) \(=\) \(\ds 3\) Sine of Zero is Zero, Cosine of Zero is One
\(\ds \leadsto \ \ \) \(\ds C_1\) \(=\) \(\ds 3\)

Hence the result.

$\blacksquare$


Sources