Linear Second Order ODE/y'' - 4 y' + 4 y = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y - 4 y' + 4 y = 0$

has the general solution:

$y = C_1 e^{2 x} + C_2 x e^{2 x}$


Proof 1

Consider the functions:

$\map {y_1} x = e^{2 x}$
$\map {y_2} x = x e^{2 x}$


We have that:

\(\ds \frac \d {\d x} \, e^{2 x}\) \(=\) \(\ds 2 e^{2 x}\) Power Rule for Derivatives
\(\ds \frac \d {\d x} \, x e^{2 x}\) \(=\) \(\ds 2 x e^{2 x} + e^{2 x}\) Power Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \frac {\d^2} {\d x^2} \, e^{2 x}\) \(=\) \(\ds 4 e^{2 x}\)
\(\ds \frac {\d^2} {\d x^2} \, e^{2 x}\) \(=\) \(\ds 4 x e^{2 x} + 2 e^{2 x} + 2 e^{2 x}\)
\(\ds \) \(=\) \(\ds 4 x e^{2 x} + 4 e^{2 x}\)


Putting $e^{2 x}$ and $x e^{2 x}$ into $(1)$ in turn:

\(\ds 4 e^0 - 4 \times 2 e^0 + 4 e^0\) \(=\) \(\ds 8 - 8 + 4\)
\(\ds \) \(=\) \(\ds 0\)


\(\ds 4 \times 0 e^0 + 4 e^0 - 4 \paren {2 \times 0 e^0 + e^0} + 4 \paren {0 e^0}\) \(=\) \(\ds 0 + 4 - 4 + 0\)
\(\ds \) \(=\) \(\ds 0\)


Hence it can be seen that:

\(\ds \map {y_1} x\) \(=\) \(\ds e^{2 x}\)
\(\ds \map {y_2} x\) \(=\) \(\ds x e^{2 x}\)

are particular solutions to $(1)$.


Calculating the Wronskian of $y_1$ and $y_2$:

\(\ds \map W {y_1, y_2}\) \(=\) \(\ds \begin{vmatrix} e^{2 x} & x e^{2 x} \\ 2 e^{2 x} & \paren {2 x + 1} e^{2 x} \end{vmatrix}\)
\(\ds \) \(=\) \(\ds e^{2 x} \times \paren {2 x + 1} e^{2 x} - x e^{2 x} \times 2 e^{2 x}\)
\(\ds \) \(=\) \(\ds \paren {2 x + 1} e^{4 x} - 2 x e^{4 x}\)
\(\ds \) \(=\) \(\ds e^{4 x}\)

So the Wronskian of $y_1$ and $y_2$ is never zero.


Thus from Zero Wronskian of Solutions of Homogeneous Linear Second Order ODE iff Linearly Dependent:

$y_1$ and $y_2$ are linearly independent everywhere on $\R$.


We have that $(1)$ is a homogeneous linear second order ODE in the form:

$y + \map P x y' + \map Q x y = 0$

where $\map P x = -4$ and $\map Q x = 4$.

So by Constant Real Function is Continuous:

$P$ and $Q$ are continuous on $\R$.


Thus from Two Linearly Independent Solutions of Homogeneous Linear Second Order ODE generate General Solution:

$(1)$ has the general solution:
$y = C_1 e^{2 x} + C_2 x e^{2 x}$

$\blacksquare$


Proof 2

It can be seen that $(1)$ is a constant coefficient homogeneous linear second order ODE.

Its auxiliary equation is:

$(2): \quad: m^2 - 4 m + 4 = 0$

From Solution to Quadratic Equation with Real Coefficients, the roots of $(2)$ are:

$m_1 = m_2 = 2$


These are real and equal.

So from Solution of Constant Coefficient Homogeneous LSOODE, the general solution of $(1)$ is:

$y = C_1 e^{2 x} + C_2 x e^{2 x}$

$\blacksquare$