Linear Second Order ODE/y'' - 7 y' - 5 y = x^3 - 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y - 7 y' - 5 y = x^3 - 1$

has the general solution:

$y = C_1 \, \map \exp {\paren {\dfrac 7 2 + \dfrac {\sqrt {69} } 2} x} + C_2 \, \map \exp {\paren {\dfrac 7 2 - \dfrac {\sqrt {69} } 2} x} + \dfrac 1 {625} \paren {-125 x^3 + 525 x^2 - 1620 x + 2603}$


Proof

It can be seen that $(1)$ is a nonhomogeneous linear second order ODE with constant coefficients in the form:

$y + p y' + q y = \map R x$

where:

$p = -7$
$q = -5$
$\map R x = x^3 - 1$


First we establish the solution of the corresponding constant coefficient homogeneous linear second order ODE:

$(2): \quad y - 7 y' - 5 y = 0$

From Linear Second Order ODE: $y - 7 y' - 5 y = 0$, this has the general solution:

$y_g = C_1 \, \map \exp {\paren {\dfrac 7 2 + \dfrac {\sqrt {69} } 2} x} + C_2 \, \map \exp {\paren {\dfrac 7 2 - \dfrac {\sqrt {69} } 2} x}$


We have that:

$\map R x = x^3 - 1$

and it is noted that $x^3 - 1$ is not itself a particular solution of $(2)$.

So from the Method of Undetermined Coefficients for Polynomials:

$y_p = A_0 + A_1 x + A_2 x^2 + A_3 x^3$

for $A_n$ to be determined.


Hence:

\(\ds y_p\) \(=\) \(\ds A_0 + A_1 x + A_2 x^2 + A_3 x^3\)
\(\ds \leadsto \ \ \) \(\ds {y_p}'\) \(=\) \(\ds A_1 + 2 A_2 x + 3 A_3 x^2\) Power Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds {y_p}\) \(=\) \(\ds 2 A_2 + 6 A_3 x\) Power Rule for Derivatives


Substituting into $(1)$:

\(\ds 2 A_2 + 6 A_3 x - 7 \paren {A_1 + 2 A_2 x + 3 A_3 x^2} - 5 \paren {A_0 + A_1 x + A_2 x^2 + A_3 x^3}\) \(=\) \(\ds x^3 - 1\)
\(\ds \leadsto \ \ \) \(\ds -5 A_3 x^3\) \(=\) \(\ds x^3\) equating powers
\(\ds \paren {-21 A_3 - 5 A_2} x^2\) \(=\) \(\ds 0\)
\(\ds \paren {6 A_3 - 14 A_2 - 5 A_1} x\) \(=\) \(\ds 0\)
\(\ds 2 A_2 - 7 A_1 - 5 A_0\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A_3\) \(=\) \(\ds -\dfrac 1 5\)
\(\ds A_2\) \(=\) \(\ds -\dfrac {21} 5 A_3\)
\(\ds \) \(=\) \(\ds -\dfrac {21} {25}\)
\(\ds 5 A_1\) \(=\) \(\ds -\dfrac 6 5 - \dfrac {294} {25}\)
\(\ds \leadsto \ \ \) \(\ds A_1\) \(=\) \(\ds -\dfrac {324} {125}\)
\(\ds 5 A_0\) \(=\) \(\ds \dfrac {42} {25} + \dfrac {2268} {125} + 1\)
\(\ds \leadsto \ \ \) \(\ds A_0\) \(=\) \(\ds \dfrac {2603} {625}\)

So from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution:

$y = y_g + y_p = C_1 \, \map \exp {\paren {\dfrac 7 2 + \dfrac {\sqrt {69} } 2} x} + C_2 \, \map \exp {\paren {\dfrac 7 2 - \dfrac {\sqrt {69} } 2} x} + \dfrac 1 {625} \paren {-125 x^3 + 525 x^2 - 1620 x + 2603}$

$\blacksquare$


Sources