Linearity of Function defined using Function with Translation Property/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $f$ be a real function.

Let $f$ have the translation property.

Let $x$ and $l$ be real numbers.

Define:

$\map {f_x} l = \map f {x + l} - \map f x$


Then:

$\forall n \in \Z: \map {f_x} {n l} = n \map {f_x} l$


Proof

Let $n$ be an integer.

We have:

\(\ds \map {f_x} {n l}\) \(=\) \(\ds \map f {x + n l} - \map f x\) Definition of $f_x$
\(\ds \) \(=\) \(\ds -\paren {\map f x - \map f {x + n l} }\)
\(\ds \) \(=\) \(\ds -\paren {\sum_{k \mathop = 1}^n \map f {x + \paren {k - 1} l} - \map f {x + \paren {x + k l} } }\) Telescoping Series
\(\ds \) \(=\) \(\ds -\paren {\sum_{k \mathop = 1}^n \map f x - \map f {x + l} }\) Definition of Translation Property
\(\ds \) \(=\) \(\ds -n \paren {\map f x - \map f {x + l} }\)
\(\ds \) \(=\) \(\ds n \paren {\map f {x + l} - \map f x}\)
\(\ds \) \(=\) \(\ds n \map {f_x} l\) Definition of $f_x$

$\blacksquare$