Local Minimum of Gamma Function on Positive Domain

From ProofWiki
Jump to navigation Jump to search

Theorem

The local minimum of the Gamma function on the positive real numbers occurs at the point:

$\left({1 \cdotp 46163 21449 68362 34126 26595, 0 \cdotp 88560 31944 10888 70027 88159}\right)$

The sequence of the $x$-coordinate elements is A030169 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).

The sequence of the $y$-coordinate elements is A030171 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Proof


Sources