Logarithm of Absolute Value of 2 times Sine of pi x is Replicative Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: \R \to \R$ be the real function defined as:

$\forall x \in \R: \map f x = \log \, \size {2 \sin \pi x}$

Then $f$ is a replicative function.


Proof

We have that:

\(\ds \sum_{k \mathop = 0}^{n - 1} \map f {x + \frac k n}\) \(=\) \(\ds \sum_{k \mathop = 0}^{n - 1} \log \, \size {2 \sin \pi \paren {x + \frac k n} }\)
\(\ds \) \(=\) \(\ds \log \prod_{k \mathop = 0}^{n - 1} \size {2 \sin \pi \paren {x + \frac k n} }\) Sum of Logarithms


Thus to demonstrate that $f$ is replicative, it is sufficient to demonstrate that:

$\ds \prod_{k \mathop = 0}^{n - 1} \paren {2 \sin \pi \paren {x + \frac k n} } = 2 \sin \pi n x$


By Product Formula for Sine:

\(\ds 2 \sin \pi n x\) \(=\) \(\ds 2^n \prod_{k \mathop = 0}^{n - 1} \paren {\map \sin {\pi x + \frac {k \pi} n} }\)
\(\ds \) \(=\) \(\ds \prod_{k \mathop = 0}^{n - 1} \paren {2 \sin \pi \paren {x + \frac k n} }\)

Hence the result.

$\blacksquare$


Sources