Logarithm of Power/Natural Logarithm/Rational Power

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a strictly positive real number.

Let $r \in \R$ be any rational number.

Let $\ln x$ be the natural logarithm of $x$.


Then:

$\map \ln {x^r} = r \ln x$


Proof

Let $r = \dfrac s t$, where $s \in \Z$ and $t \in \Z_{>0}$.

First:

\(\ds \map \ln x\) \(=\) \(\ds \map \ln {x^{t / t} }\)
\(\ds \) \(=\) \(\ds \map \ln {\paren {x^{1 / t} }^t}\) Product of Indices of Real Number/Rational Numbers
\(\ds \) \(=\) \(\ds t \map \ln {x^{1 / t} }\) Logarithm of Power/Natural Logarithm/Integer Power
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map \ln {x^{1 / t} }\) \(=\) \(\ds \frac 1 t \map \ln x\) dividing both sides by $t$

Thus:

\(\ds \map \ln {x^{s / t} }\) \(=\) \(\ds \map \ln {\paren {x^{1 / t} }^s}\) Product of Indices of Real Number/Rational Numbers
\(\ds \) \(=\) \(\ds s \map \ln {x^{1 / t} }\) Logarithm of Power/Natural Logarithm/Integer Power
\(\ds \) \(=\) \(\ds \frac s t \map \ln x\) from $(1)$
\(\ds \) \(=\) \(\ds r \map \ln x\) Definition of $s$ and $t$

$\blacksquare$