Logarithm of Power
(Redirected from Logarithms of Powers)
Jump to navigation
Jump to search
Theorem
Natural Logarithms
Let $x \in \R$ be a strictly positive real number.
Let $a \in \R$ be a real number such that $a > 1$.
Let $r \in \R$ be any real number.
Let $\ln x$ be the natural logarithm of $x$.
Then:
- $\map \ln {x^r} = r \ln x$
General Logarithms
Let $x \in \R$ be a strictly positive real number.
Let $a \in \R$ be a real number such that $a > 1$.
Let $r \in \R$ be any real number.
Let $\log_a x$ be the logarithm to the base $a$ of $x$.
Then:
- $\map {\log_a} {x^r} = r \log_a x$
Sources
- For a video presentation of the contents of this page, visit the Khan Academy.