Lower Bound for Binomial Coefficient

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n, k \in \Z$ such that $n \ge k \ge 0$.

Then:

$\dbinom n k \ge \paren {\dfrac {\paren {n - k} e} k}^k \dfrac 1 {e k}$

where $\dbinom n k$ denotes a binomial coefficient.


Proof

From Lower and Upper Bound of Factorial, we have that:

$k! \le \dfrac {k^{k + 1} } {e^{k - 1} }$

so that:

$(1): \quad \dfrac 1 {k!} \ge \dfrac {e^{k - 1} } {k^{k + 1} }$


Then:

\(\ds \dbinom n k\) \(=\) \(\ds \dfrac {n^\underline k} {k!}\) Definition of Binomial Coefficient
\(\ds \) \(\ge\) \(\ds \dfrac {\paren {n - k}^k} {k!}\)
\(\ds \) \(\ge\) \(\ds \dfrac {\paren {n - k}^k e^{k - 1} } {k^{k + 1} }\) from $(1)$
\(\ds \) \(=\) \(\ds \dfrac {\paren {n - k}^k e^k} {k^k} \dfrac 1 {e k}\)

Hence the result.

$\blacksquare$


Sources