Lower Closure of Meet of Lower Closures

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \preceq}$ be a meet semilattice.

Let $D_1, D_2$ be subsets of $S$.

Then:

$\set {i_1 \wedge i_2: i_1 \in D_1^\preceq, i_2 \in D_2^\preceq}^\preceq = \set {i_1 \wedge i_2: i_1 \in D_1, i_2 \in D_2}^\preceq$

where

$D_1^\preceq$ denotes the lower closure of $D_1$.


Proof

By Lower Closure is Closure Operator:

$D_1 \subseteq D_1^\preceq$ and $D_2 \subseteq D_2^\preceq$

Then

$\set {i_1 \wedge i_2: i_1 \in D_1, i_2 \in D_2} \subseteq \set {i_1 \wedge i_2: i_1 \in D_1^\preceq, i_2 \in D_2^\preceq}$

By Lower Closure is Closure Operator:

$\set {i_1 \wedge i_2: i_1 \in D_1, i_2 \in D_2}^\preceq \subseteq \set {i_1 \wedge i_2: i_1 \in D_1^\preceq, i_2 \in D_2^\preceq}^\preceq$

By definition of set equality it remains to prove that

$\set {i_1 \wedge i_2: i_1 \in D_1^\preceq, i_2 \in D_2^\preceq}^\preceq \subseteq \set {i_1 \wedge i_2: i_1 \in D_1, i_2 \in D_2}^\preceq$

Let $x \in \set {i_1 \wedge i_2: i_1 \in D_1^\preceq, i_2 \in D_2^\preceq}^\preceq$.

By definition of lower closure of set:

$\exists y \in \set {i_1 \wedge i_2: i_1 \in D_1^\preceq, i_2 \in D_2^\preceq} \land x \preceq y$

Then:

$\exists i_1 \in D_1^\preceq, i_2 \in D_2^\preceq: y = i_1 \wedge i_2$

By definition of lower closure of set:

$\exists d_1 \in D_1: i_1 \preceq d_1$

and

$\exists d_2 \in D_2: i_2 \preceq d_2$

By Meet Semilattice is Ordered Structure:

$y \preceq d_1 \wedge d_2$

By definition of transitivity:

$x \preceq d_1 \wedge d_2$
$d_1 \wedge d_2 \in \set {i_1 \wedge i_2: i_1 \in D_1, i_2 \in D_2}$

Thus by definition of lower closure of set:

$x \in \set {i_1 \wedge i_2: i_1 \in D_1, i_2 \in D_2}^\preceq$

Thus the result.

$\blacksquare$


Sources