Lower Triangular Matrix/Examples/Square Matrix

From ProofWiki
Jump to navigation Jump to search

Example of Lower Triangular Matrix

An lower triangular square matrix of order $n$:

$\mathbf L = \begin{bmatrix} a_{1 1} & 0 & 0 & \cdots & 0 & 0 \\ a_{2 1} & a_{2 2} & 0 & \cdots & 0 & 0 \\ a_{3 1} & a_{3 2} & a_{3 3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n - 1, 1} & a_{n - 1, 2} & a_{n - 1, 3} & \cdots & a_{n - 1, n - 1} & 0 \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n, n - 1} & a_{n n} \\ \end{bmatrix}$