Lower and Upper Bound of Factorial

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Then:

$\dfrac {n^n} {e^{n - 1} } \le n! \le \dfrac {n^{n + 1} } {e^{n - 1} }$


Proof

We have:

\(\ds 1 + x\) \(\le\) \(\ds e^x\) Exponential of $x$ not less than $1+x$
\(\ds \leadsto \ \ \) \(\ds 1 + \frac 1 k\) \(\le\) \(\ds e^{1 / k}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \frac {k + 1} k\) \(\le\) \(\ds e^{1 / k}\)


and similarly:

\(\ds 1 + x\) \(\le\) \(\ds e^x\) Exponential of $x$ not less than $1+x$
\(\ds \leadsto \ \ \) \(\ds 1 - \frac 1 {k + 1}\) \(\le\) \(\ds e^{-1 / \left({k + 1}\right)}\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \frac k {k + 1}\) \(\le\) \(\ds e^{-1 / \left({k + 1}\right)}\)


First the left hand side inequality:

\(\ds \prod_{k \mathop = 1}^{n - 1} \dfrac {\left({k + 1}\right)^k} {k^k}\) \(=\) \(\ds \frac {2 \times 3^2 \times 4^3 \times \cdots \times n^{n - 1} } {1 \times 2^2 \times 3^3 \times 4^4 \times \cdots \times \left({n - 1}\right)^{n - 1} }\)
\(\ds \) \(=\) \(\ds \frac {n^{n - 1} } {\left({n - 1}\right)!}\) as most of it cancels
\(\ds \) \(=\) \(\ds \frac {n \times n^{n - 1} } {n \left({n - 1}\right)!}\)
\(\text {(3)}: \quad\) \(\ds \) \(=\) \(\ds \frac {n^n} {n!}\)

Then:

\(\ds \prod_{k \mathop = 1}^{n - 1} \dfrac {\left({k + 1}\right)^k} {k^k}\) \(\le\) \(\ds \prod_{k \mathop = 1}^{n - 1} \left({e^{1 / k} }\right)^k\) from $(1)$
\(\ds \) \(=\) \(\ds \prod_{k \mathop = 1}^{n - 1} e\)
\(\ds \) \(=\) \(\ds e^{n - 1}\)
\(\ds \leadsto \ \ \) \(\ds \frac {n^n} {n!}\) \(\le\) \(\ds e^{n - 1}\) from $(3)$
\(\ds \leadsto \ \ \) \(\ds \frac 1 {n!}\) \(\le\) \(\ds \frac {e^{n - 1} } {n^n}\)
\(\ds \leadsto \ \ \) \(\ds n!\) \(\ge\) \(\ds \frac {n^n} {e^{n - 1} }\) Ordering of Reciprocals

$\Box$


Now the right hand side inequality:

\(\ds \prod_{k \mathop = 1}^{n - 1} \dfrac {k^{k + 1} } {\left({k + 1}\right)^{k + 1} }\) \(=\) \(\ds \frac {1^2 \times 2^3 \times 3^4 \times \cdots \times \left({n - 1}\right)^n} {2^2 \times 3^3 \times 4^4 \times \cdots \times \left({n - 1}\right)^{n - 1} \times n^n}\)
\(\ds \) \(=\) \(\ds \frac {\left({n - 1}\right)!} {n^n}\) as most of it cancels
\(\ds \) \(=\) \(\ds \frac {n \left({n - 1}\right)!} {n \times n^n}\)
\(\text {(4)}: \quad\) \(\ds \) \(=\) \(\ds \frac {n!} {n^{n + 1} }\)

Then:

\(\ds \prod_{k \mathop = 1}^{n - 1} \dfrac {k^{k + 1} } {\left({k + 1}\right)^{k + 1} }\) \(\le\) \(\ds \prod_{k \mathop = 1}^{n - 1} \left({e^{-1 / \left({k + 1}\right)} }\right)^{k + 1}\) from $(2)$
\(\ds \) \(=\) \(\ds \prod_{k \mathop = 1}^{n - 1} e^{-1}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {e^{n - 1} }\)
\(\ds \leadsto \ \ \) \(\ds \frac {n^n} {n!}\) \(\le\) \(\ds \frac {n!} {n^{n + 1} }\) from $(4)$
\(\ds \leadsto \ \ \) \(\ds n!\) \(\le\) \(\ds \frac {n^{n + 1} } {e^{n - 1} }\)

$\Box$


Hence the result.

$\blacksquare$


Sources