Lowest Common Multiple of Integers/Examples/2n-1 and 2n+1

From ProofWiki
Jump to navigation Jump to search

Example of Lowest Common Multiple of Integers

Let $n \in \Z_{>0}$ be a strictly positive integer.

The lowest common multiple of $2 n - 1$ and $2 n + 1$ is:

$\lcm \set {2 n - 1, 2 n + 1} = 4 n^2 - 1$


Proof

We find the greatest common divisor of $2 n - 1$ and $2 n + 1$ using the Euclidean Algorithm:

\(\text {(1)}: \quad\) \(\ds 2 n + 1\) \(=\) \(\ds 1 \times \paren {2 n - 1} + 2\)
\(\text {(2)}: \quad\) \(\ds 2 n - 1\) \(=\) \(\ds 2 \times \paren {n - 1} + 1\)
\(\text {(3)}: \quad\) \(\ds n - 1\) \(=\) \(\ds 1 \times \paren {n - 1}\)


Thus $\gcd \set {2 n - 1, 2 n + 1} = 1$.

Hence by definition $n$ and $n + 1$ are coprime.


Thus:

\(\ds \lcm \set {2 n - 1, 2 n + 1}\) \(=\) \(\ds \paren {2 n + 1} \paren {2 n - 1}\) LCM equals Product iff Coprime
\(\ds \) \(=\) \(\ds \paren {2 n}^2 - 1\) Difference of Two Squares

The result follows.

$\blacksquare$


Sources