Machin's Formula for Pi/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac \pi 4 = 4 \arctan \dfrac 1 5 - \arctan \dfrac 1 {239} \approx 0 \cdotp 78539 \, 81633 \, 9744 \ldots$


The calculation of $\pi$ (pi) can then proceed using the Gregory Series:

$\arctan \dfrac 1 x = \dfrac 1 x - \dfrac 1 {3 x^3} + \dfrac 1 {5 x^5} - \dfrac 1 {7 x^7} + \dfrac 1 {9 x^9} - \cdots$

which is valid for $x \ge 1$.


Proof

\(\ds \map \arg {\paren {5 + i }^4 \paren {239 - i} }\) \(=\) \(\ds \map \arg {5 + i}^4 + \map \arg {239 - i}\) Argument of Product equals Sum of Arguments
\(\ds \) \(=\) \(\ds 4 \map \arg {5 + i} + \map \arg {239 - i}\) Argument of Product equals Sum of Arguments
\(\ds \) \(=\) \(\ds 4 \arctan \frac 1 5 + \arctan \frac {-1} {239}\)
\(\ds \) \(=\) \(\ds 4 \arctan \frac 1 5 - \arctan \frac 1 {239}\) Inverse Tangent is Odd Function




Furthermore, because:

\(\ds \paren {5 + i}^4\) \(=\) \(\ds 5^4 + 4 \times 5^3 i - 6 \times 5^2 - 4 \times 5 i + 1\) Binomial Theorem
\(\ds \) \(=\) \(\ds 476 + 480i\) simplifying

we can write:

\(\ds \paren {5 + i}^4 \paren {239 - i}\) \(=\) \(\ds \paren {476 + 480 i} \paren {239 - i}\)
\(\ds \) \(=\) \(\ds 113764 + 480 + 114720i - 476i\)
\(\ds \) \(=\) \(\ds 114244 + 114244i\)


From there, we substitute:

\(\ds \map \arg {\paren {5 + i }^4 \paren {239 - i} }\) \(=\) \(\ds \map \arg {114244 + 114244 i}\)
\(\ds \) \(=\) \(\ds \arctan \frac {114244} {114244}\)
\(\ds \) \(=\) \(\ds \arctan 1\)
\(\ds \) \(=\) \(\ds \frac \pi 4\)

By transitivity:

$\dfrac \pi 4 = 4 \arctan \dfrac 1 5 - \arctan \dfrac 1 {239}$

$\blacksquare$


Source of Name

This entry was named for John Machin.


Historical Note

John Machin devised his formula for $\pi$ in $1706$.

It allowed him to calculate $\pi$ to over $100$ decimal places.

This greatly surpassed the work of Ludolph van Ceulen.