# Welcome to $\mathsf{Pr} \infty \mathsf{fWiki}$

 $\mathsf{Pr} \infty \mathsf{fWiki}$ is an online compendium of mathematical proofs! Our goal is the collection, collaboration and classification of mathematical proofs. If you are interested in helping create an online resource for math proofs feel free to register for an account. Thanks and enjoy! If you have any questions, comments, or suggestions please post on the discussion page, or contact one of the administrators. Also, feel free to take a look at the frequently asked questions because you may not be the first with your idea. To see what's currently happening in the community, visit the community portal.
27,287 Proofs 28,277 Definitions Help

# Featured Proof

## Theorem

Let $x \in \Q$ be a rational number.

Let the decimal expansion of $x$ be:

$0 \cdotp a_1 a_2 \ldots a_m \dot b_1 b_2 \ldots \dot b_n$

where $a_i: i \in \set {1, 2, \ldots, m}$ and $b_j: j \in \set {1, 2, \ldots, n}$ be the digits in the base $10$ expansion of $x$.

Then $x$ can be expressed as the following fraction:

$x = \dfrac {a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n - a_1 a_2 \ldots a_m} {10^m \times \paren {10^n - 1} }$

## Proof

First we note that:

 $\ds 0 \cdotp \dot b_1 b_2 \ldots \dot b_n \times 10^n$ $=$ $\ds b_1 b_2 \ldots b_n \cdotp \dot b_1 b_2 \ldots \dot b_n$ $\ds \leadsto \ \$ $\ds 0 \cdotp \dot b_1 b_2 \ldots \dot b_n \times 10^n - 0 \cdotp \dot b_1 b_2 \ldots \dot b_n$ $=$ $\ds b_1 b_2 \ldots b_n \cdotp \dot b_1 b_2 \ldots \dot b_n - 0 \cdotp \dot b_1 b_2 \ldots \dot b_n$ subtracting $0 \cdotp \dot b_1 b_2 \ldots \dot b_n$ from both sides $\ds \leadsto \ \$ $\ds 0 \cdotp \dot b_1 b_2 \ldots \dot b_n \times \paren{10^n - 1}$ $=$ $\ds b_1 b_2 \ldots b_n$ $\ds \leadsto \ \$ $\ds 0 \cdotp \dot b_1 b_2 \ldots \dot b_n$ $=$ $\ds \dfrac {b_1 b_2 \ldots b_n} {\paren {10^n - 1} }$ $\ds \leadsto \ \$ $\ds 0 \cdotp a_1 a_2 \ldots a_m \dot b_1 b_2 \ldots \dot b_n$ $=$ $\ds \dfrac {a_1 a_2 \ldots a_m} {10^m} + \dfrac 1 {10^m} \times \dfrac {b_1 b_2 \ldots b_n} {\paren {10^n - 1} }$ Definition of Decimal Expansion $\ds$ $=$ $\ds \dfrac {a_1 a_2 \ldots a_m} {10^m} \times \dfrac {\paren {10^n - 1} } {\paren {10^n - 1} } + \dfrac 1 {10^m} \times \dfrac {b_1 b_2 \ldots b_n} {\paren {10^n - 1} }$ multiplying top and bottom by $10^n - 1$ $\ds$ $=$ $\ds \dfrac {a_1 a_2 \ldots a_m \overbrace{000 \ldots 000}^n - a_1 a_2 \ldots a_m } {10^m \paren {10^n - 1} } + \dfrac {b_1 b_2 \ldots b_n} {10^m \paren {10^n - 1} }$ $\ds$ $=$ $\ds \dfrac {a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n - a_1 a_2 \ldots a_m }{10^m \times \paren {10^n - 1 } }$

$\blacksquare$

## Examples

### Decimal Number $0 \cdotp 7 \dot 1 82 \dot 8$

The number:

$0. 7\dot 1 82 \dot 8$

can be expressed as a fraction as:

 $\ds 0. 7 \dot 1 82 \dot 8$ $=$ $\ds \dfrac {71828 - 7} {10^1 \paren {10^4 - 1} }$ $\ds$ $=$ $\ds \dfrac {71821} {99990}$

### Decimal Number $0 \cdotp 14 \dot 1 \dot 6$

The number:

$0. 14 \dot 1 \dot 6$

can be expressed as a fraction as:

 $\ds 0. 14 \dot 1 \dot 6$ $=$ $\ds \dfrac {1416 - 14} {10^2 \paren {10^2 - 1} }$ $\ds$ $=$ $\ds \dfrac {1402} {9900}$