Mapping from Totally Ordered Set is Order Embedding iff Strictly Increasing
Theorem
Let $\struct {S, \preceq_1}$ be a totally ordered set.
Let $\struct {T, \preceq_2}$ be an ordered set.
Let $\phi: S \to T$ be a mapping.
Then $\phi$ is an order embedding if and only if $\phi$ is strictly increasing.
That is:
- $\forall x, y \in S: x \preceq_1 y \iff \map \phi x \preceq_2 \map \phi y$
- $\forall x, y \in S: x \prec_1 y \implies \map \phi x \prec_2 \map \phi y$
Proof
Forward Implication
Let $\phi$ be an order embedding.
Let $x, y \in S$ with $x \prec_1 y$, where $\prec_1$ is the strict predecessor relation.
Then:
\(\ds \) | \(\) | \(\ds x \prec_1 y \land x \ne y\) | Definition 2 of Strictly Precedes | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \map \phi x \preceq_2 \map \phi y\) | Definition of Order Embedding | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \map \phi x \prec_2 \map \phi y\) | $\phi$ is injective |
So by definition, $\phi$ is strictly increasing.
$\Box$
Reverse Implication
Proof 1
Let $x \preceq_1 y$.
Then $x = y$ or $x \prec_1 y$.
Let $x = y$.
Then
- $\map \phi x = \map \phi y$
so:
- $\map \phi x \preceq_2 \map \phi y$
Let $x \prec_1 y$.
Then by the definition of strictly increasing mapping:
- $\map \phi x \prec_2 \map \phi y$
so by the definition of $\prec_2$:
- $\map \phi x \preceq_2 \map \phi y$
Thus:
- $x \preceq_1 y \implies \map \phi x \preceq_2 \map \phi y$
It remains to be shown that:
- $\map \phi x \preceq_2 \map \phi y \implies x \preceq_1 y$
Suppose that $x \npreceq_1 y$.
Since $\preceq_1$ is a total ordering:
- $y \prec_1 x$
Thus since $\phi$ is strictly increasing:
- $\map \phi y \prec_1 \map \phi x$
Thus:
- $\map \phi x \npreceq_1 \map \phi y$
Therefore:
- $x \npreceq_1 y \implies \map \phi x \npreceq_2 \map \phi y$
By the Rule of Transposition:
- $\map \phi x \preceq_2 \map \phi y \implies x \preceq y$
$\blacksquare$
Proof 2
Let $\phi$ be strictly increasing.
Let $\map \phi x \preceq_2 \map \phi y$.
As $\struct {S, \prec_1}$ is a strictly totally ordered set:
- Either $y \prec_1 x$, $y = x$, or $x \prec_1 y$.
Aiming for a contradiction, suppose that $y \prec_1 x$.
By the definition of a strictly increasing mapping:
- $\map \phi y \prec_2 \map \phi x$
which contradicts the fact that $\map \phi x \preceq_2 \map \phi y$.
Therefore $y \nprec_1 x$.
Thus $y = x$, or $x \prec_1 y$, so $x \preceq_1 y$.
Hence:
- $\map \phi x \preceq_2 \map \phi y \iff x \preceq_1 y$
and $\phi$ has been proved to be an order embedding.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 14$: Orderings: Theorem $14.9: \ 2^\circ$