Mapping from Unit Circle defines Periodic Function
Jump to navigation
Jump to search
Theorem
Let $\SS$ denote the unit circle whose center is at the origin of the Cartesian plane $\R^2$.
Let $p: \R \to \SS$ be the mapping defined as:
- $\forall x \in \R: \map p x = \tuple {\cos x, \sin x}$
Let $f': \SS \to \R$ be a real-valued function.
Then the composition $f' \circ p$ defines a periodic real function whose period is $2 \pi$.
Proof
Let $f := f' \circ p$ denote the composition of $f$ with $p$.
We have:
\(\ds \forall x \in \R: \, \) | \(\ds \map f {x + 2 \pi}\) | \(=\) | \(\ds \map {f'} {\map p {x + 2 \pi} }\) | Definition of Composition of Mappings | ||||||||||
\(\ds \) | \(=\) | \(\ds \map {f'} {\map \cos {x + 2 \pi}, \map \sin {x + 2 \pi} }\) | Definition of $p$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {f'} {\cos x, \sin x}\) | Cosine of Angle plus Full Angle, Sine of Angle plus Full Angle | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {f'} {\map p x}\) | Definition of $p$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map f x\) | Definition of Composition of Mappings |
Hence the result.
$\blacksquare$
Also see
Sources
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $3$: Continuity generalized: topological spaces: $3.8$: Quotient spaces