Master Code forms Vector Space
Jump to navigation
Jump to search
Theorem
Let $\map V {n, p}$ be a master code of length $n$ modulo $p$.
Then $\map V {n, p}$ forms a vector space over $\Z_p$ of $n$ dimensions.
Proof
Recall the vector space axioms:
The vector space axioms consist of the abelian group axioms:
\((\text V 0)\) | $:$ | Closure Axiom | \(\ds \forall \mathbf x, \mathbf y \in G:\) | \(\ds \mathbf x +_G \mathbf y \in G \) | |||||
\((\text V 1)\) | $:$ | Commutativity Axiom | \(\ds \forall \mathbf x, \mathbf y \in G:\) | \(\ds \mathbf x +_G \mathbf y = \mathbf y +_G \mathbf x \) | |||||
\((\text V 2)\) | $:$ | Associativity Axiom | \(\ds \forall \mathbf x, \mathbf y, \mathbf z \in G:\) | \(\ds \paren {\mathbf x +_G \mathbf y} +_G \mathbf z = \mathbf x +_G \paren {\mathbf y +_G \mathbf z} \) | |||||
\((\text V 3)\) | $:$ | Identity Axiom | \(\ds \exists \mathbf 0 \in G: \forall \mathbf x \in G:\) | \(\ds \mathbf 0 +_G \mathbf x = \mathbf x = \mathbf x +_G \mathbf 0 \) | |||||
\((\text V 4)\) | $:$ | Inverse Axiom | \(\ds \forall \mathbf x \in G: \exists \paren {-\mathbf x} \in G:\) | \(\ds \mathbf x +_G \paren {-\mathbf x} = \mathbf 0 \) |
together with the properties of a unitary module:
\((\text V 5)\) | $:$ | Distributivity over Scalar Addition | \(\ds \forall \lambda, \mu \in K: \forall \mathbf x \in G:\) | \(\ds \paren {\lambda + \mu} \circ \mathbf x = \lambda \circ \mathbf x +_G \mu \circ \mathbf x \) | |||||
\((\text V 6)\) | $:$ | Distributivity over Vector Addition | \(\ds \forall \lambda \in K: \forall \mathbf x, \mathbf y \in G:\) | \(\ds \lambda \circ \paren {\mathbf x +_G \mathbf y} = \lambda \circ \mathbf x +_G \lambda \circ \mathbf y \) | |||||
\((\text V 7)\) | $:$ | Associativity with Scalar Multiplication | \(\ds \forall \lambda, \mu \in K: \forall \mathbf x \in G:\) | \(\ds \lambda \circ \paren {\mu \circ \mathbf x} = \paren {\lambda \cdot \mu} \circ \mathbf x \) | |||||
\((\text V 8)\) | $:$ | Identity for Scalar Multiplication | \(\ds \forall \mathbf x \in G:\) | \(\ds 1_K \circ \mathbf x = \mathbf x \) |
First, the set of sequences $\tuple {x_1, x_2, \ldots, x_n}$, for $x_1, x_2, \ldots, x_n \in \Z_p$, has to be shown to fulfil the abelian group axioms.
This follows from:
and:
This theorem requires a proof. In particular: needs to be finished off, but it's tedious and I lack the patience tonight. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $6$: Error-correcting codes