Mathematician:Gerhard Karl Erich Gentzen

From ProofWiki
Jump to navigation Jump to search

Mathematician

German mathematician and logician who made progress in symbolic logic.

Proved that the Peano axioms are consistent.


Nationality

German


History

  • Born: 24 Nov 1909 in Greifswald, Germany
  • 1928: Received his Abitur, ranked top in school
  • 1928: Began mathematical studies at University of Greifswald
  • 22 April 1929: Entered the University of Göttingen, then Munich and Berlin, student of Paul Bernays and Hermann Weyl
  • 1933: Awarded his doctorate at Göttingen
  • 1934: Became Hilbert's assistant at Göttingen
  • 1939 to 1941: Military service, left due to ill health
  • 1941: Returned to Göttingen
  • 1943: Awarded degree, took up a teaching post in the Mathematical Institute of the German University of Prague
  • 5 May 1945: Arrested in uprising
  • 9 May 1945: Transferred to custody of Russian army
  • Died: 4 Aug 1945 in Prague, Czechoslovakia of starvation while interned by Russian forces


Theorems and Definitions

Results named for Gerhard Karl Erich Gentzen can be found here.

Definitions of concepts named for Gerhard Karl Erich Gentzen can be found here.


Publications

  • 1932: Über die Existenz unabhangiger Axiomenstsreme zu unendlichen Satzsystemen (Math. Ann. Vol. 107no. 2: 329 – 350)
  • 1934: Untersuchungen über das logische Schließen. I (Math. Z. Vol. 39: 176 – 210)
  • 1935: Untersuchungen über das logische Schließen. II (Math. Z. Vol. 39: 405 – 431)
  • 1936: Die Widerspruchsfreiheit der Stufenlogik (Math. Z. Vol. 41: 357 – 366)
  • 1936: Die Widerspruchsfreiheit der reinen Zahlentheorie (Math. Ann. Vol. 112: 493 – 565)
  • 27 June 1936: Der Unendlichkeitsbegriff in der Mathematik. Vortrag, gehalten in Münster am 27. Juni 1936 am Institut von Heinrich Scholz (Semester-Berichte Münster : 65 – 80) (Lecture held in Münster at the institute of Heinrich Scholz)
  • 1937: Unendlichkeitsbegriff und Widerspruchsfreiheit der Mathematik (Actualités Scientifiques et Industrielles Vol. 535: 201 – 205)
  • 1938: Die gegenwartige Lage in der mathematischen Grundlagenforschung (Deutsche Mathematik Vol. 3: 255 – 268)
  • 1938: Neue Fassung des Widerspruchsfreiheitsbeweises fur die reine Zahlentheorie (Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften Vol. 4: 19 – 44)
  • 1943: Beweisbarkeit und Unbeweisbarkeit von Anfangsfallen der transfiniten Induktion in der reinen Zahlentheorie ("Provability and nonprovability of restricted transfinite induction in elementary number theory") (Math. Ann. Vol. 119: 140 – 161)


Posthumous


Sources