Mathematician:Mathematicians/Sorted By Nation/China

From ProofWiki
Jump to navigation Jump to search

For more comprehensive information on the lives and works of mathematicians through the ages, see the MacTutor History of Mathematics archive, created by John J. O'Connor and Edmund F. Robertson.

The army of those who have made at least one definite contribution to mathematics as we know it soon becomes a mob as we look back over history; 6,000 or 8,000 names press forward for some word from us to preserve them from oblivion, and once the bolder leaders have been recognised it becomes largely a matter of arbitrary, illogical legislation to judge who of the clamouring multitude shall be permitted to survive and who be condemned to be forgotten.
-- Eric Temple Bell: Men of Mathematics, 1937, Victor Gollancz, London

China

Liu Hui (c. 225 – c. 295)

Chinese mathematician and writer.

Edited and published a book with solutions to mathematical problems presented in Jiuzhang suanshu ("Nine Chapters on the Mathematical Art"), in which he gave:

a calculation of $\pi$ (pi) correct to $4$ decimal places
proof of the formulae for the volume of the square pyramid and tetrahedron.

Possibly the first mathematician to discover, understand and use negative numbers.
show full page


Sun Tzu (c. 400 – c. 460)

Chinese mathematician and astronomer.

Best known for his work on Diophantine equations. His work is the source of the Chinese Remainder Theorem.
show full page


Zu Chongzhi (429 – 501)

Prominent Chinese mathematician and astronomer.

Derived the most accurate approximation for $\pi$ for over nine hundred years.

Credited (along with Zu Geng) with proving the volume of the sphere using the same principle as Bonaventura Francesco Cavalieri.
show full page


Zu Geng (c. 450 – c. 520)

Also known as Zu Gengzhi (simplified Chinese: 祖暅之; traditional Chinese: 祖暅之; pinyin: Zǔ Gèngzhī; Wade–Giles: Tsu Kengchi; 480 - 525), courtesy name Jing Shuo (景烁).

Son of Zu Chongzhi.

Chinese mathematician who determined how to compute the diameter of a sphere of a given volume. He did this using a generalized version of Cavalieri's Principle.
show full page


Chia Hsien (c. 1010 – c. 1070)

Chinese mathematician best known for discussing Pascal's Triangle about 500 years before Pascal.
show full page


Li Ye (1192 – 1279)

Chinese mathematician and writer who published and improved the tian yuan shu method for solving polynomial equations of one variable.
show full page


Qin Jiushao (c. 1202 – 1261)

Chinese mathematician, meteorologist, inventor, politician, and writer.

Credited with the discovery of the Ruffini-Horner Method.

Also credited with inventing the Tianchi basin, a type of rain gauge instrument used to gather meteorological data.
show full page


Yang Hui (c. 1238 – c. 1298)

Simplified Chinese: 杨辉; traditional Chinese: 楊輝; pinyin: Yáng Huī, courtesy name Qianguang (谦光).

Chinese mathematician who is best known for an early treatment of Pascal's Triangle (also known as Yang Hui's Triangle), although acknowledging that it was given an earlier treatment by Chia Hsien in a work which is now lost.
show full page


Chu Shih-Chieh (c. 1260 – c. 1320)

Acknowledged as one of the greatest Chinese mathematicians of his era, he spent 20 years travelling around China teaching mathematics.

Chu was his family name, Shih-chieh his given name.
show full page


Hua Luogeng (1910 – 1985)

Chinese mathematician famous for his important contributions to number theory and for his role as the leader of mathematics research and education in the People's Republic of China.
show full page


Kai Lai Chung (1917 – 2009)

Chinese American mathematician known for his significant contributions to modern probability theory.
show full page


Chen Jingrun (1933 – 1996)

Chinese mathematician who made significant inroads into Goldbach's Conjecture by proving what is now referred to as Chen's Theorem.
show full page


Andrew Chi-Chih Yao (b. 1946 )

Chinese-American computer scientist and computational theorist.
show full page