# Mathematician:Mathematicians/Sorted By Nation/Norway

For more comprehensive information on the lives and works of mathematicians through the ages, see the MacTutor History of Mathematics archive, created by John J. O'Connor and Edmund F. Robertson.

*The army of those who have made at least one definite contribution to mathematics as we know it soon becomes a mob as we look back over history; 6,000 or 8,000 names press forward for some word from us to preserve them from oblivion, and once the bolder leaders have been recognised it becomes largely a matter of arbitrary, illogical legislation to judge who of the clamouring multitude shall be permitted to survive and who be condemned to be forgotten.*- -- Eric Temple Bell:
*Men of Mathematics*, 1937, Victor Gollancz, London

- -- Eric Temple Bell:

## Contents

- 1 Norway
- 1.1 Caspar Wessel $($$\text {1745}$ – $\text {1818}$$)$
- 1.2 Niels Henrik Abel $($$\text {1802}$ – $\text {1829}$$)$
- 1.3 Peter Ludwig Mejdell Sylow $($$\text {1832}$ – $\text {1918}$$)$
- 1.4 Marius Sophus Lie $($$\text {1842}$ – $\text {1899}$$)$
- 1.5 Axel Thue $($$\text {1863}$ – $\text {1922}$$)$
- 1.6 Viggo Brun $($$\text {1885}$ – $\text {1978}$$)$
- 1.7 Thoralf Albert Skolem $($$\text {1887}$ – $\text {1963}$$)$
- 1.8 Trygve Nagell $($$\text {1895}$ – $\text {1988}$$)$
- 1.9 Øystein Ore $($$\text {1899}$ – $\text {1968}$$)$
- 1.10 Ingebrigt Johansson $($$\text {1904}$ – $\text {1987}$$)$
- 1.11 Wilhelm Ljunggren $($$\text {1905}$ – $\text {1973}$$)$
- 1.12 Atle Selberg $($$\text {1917}$ – $\text {2007}$$)$

## Norway

##### Caspar Wessel $($$\text {1745}$ – $\text {1818}$$)$

Norwegian–Danish mathematician and cartographer who, in $1799$, was the first person to describe the geometrical interpretation of complex numbers as points in the complex plane.
**show full page**

##### Niels Henrik Abel $($$\text {1802}$ – $\text {1829}$$)$

Norwegian mathematician who died tragically young.

Made significant contributions towards algebra, analysis and group theory.

Best known for proving the impossibility of solving the general quintic in radicals (Abel-Ruffini Theorem).
**show full page**

##### Peter Ludwig Mejdell Sylow $($$\text {1832}$ – $\text {1918}$$)$

**Ludwig Sylow** was a Norwegian mathematician who established some important facts on the topic of subgroups of prime order.

After retiring from a career of schoolteaching he was appointed to a position as a University professor at the age of $65$.
**show full page**

##### Marius Sophus Lie $($$\text {1842}$ – $\text {1899}$$)$

Norwegian mathematician famous for his study of continuous transformation groups.

Such objects are now called Lie groups.
**show full page**

##### Axel Thue $($$\text {1863}$ – $\text {1922}$$)$

Norwegian mathematician, known for his original work in diophantine approximation and combinatorics.
**show full page**

##### Viggo Brun $($$\text {1885}$ – $\text {1978}$$)$

Norwegian mathematician best known for his work in number theory.
**show full page**

##### Thoralf Albert Skolem $($$\text {1887}$ – $\text {1963}$$)$

Norwegian mathematician who worked mainly in the fields of mathematical logic and set theory.
**show full page**

##### Trygve Nagell $($$\text {1895}$ – $\text {1988}$$)$

Norwegian mathematician known for his work on Diophantine equations.
**show full page**

##### Øystein Ore $($$\text {1899}$ – $\text {1968}$$)$

Norwegian mathematician whose work was mainly in graph theory, although also known for his work in ring theory and Galois theory.

One of the early founders of lattice theory.

Also known for writing and editing several books, including a few on various aspects of the history of mathematics.
**show full page**

##### Ingebrigt Johansson $($$\text {1904}$ – $\text {1987}$$)$

Norwegian mathematician and logician best known for inventing minimal logic.
**show full page**

##### Wilhelm Ljunggren $($$\text {1905}$ – $\text {1973}$$)$

Norwegian mathematician, specializing in number theory.
**show full page**

##### Atle Selberg $($$\text {1917}$ – $\text {2007}$$)$

Norwegian mathematician known for his work in analytic number theory, and in the theory of automorphic forms.

Instrumental in developing a proof of the Prime Number Theorem. Engaged in a bitter dispute with Paul Erdős over priority.
**show full page**