Matrix Corresponding to Change of Basis under Linear Transformation
Theorem
Let $R$ be a ring with unity.
Let $G$ and $H$ be free $R$-modules of finite dimensions $n,m>0$ respectively.
Let $\left \langle {a_n} \right \rangle$ and $\left \langle {{a_n}'} \right \rangle$ be ordered bases of $G$.
Let $\left \langle {b_m} \right \rangle$ and $\left \langle {{b_m}'} \right \rangle$ be ordered bases of $H$.
Let $u: G \to H$ be a linear transformation, and let $\left[{u; \left \langle {b_m} \right \rangle, \left \langle {a_n} \right \rangle}\right]$ be the matrix of $u$ relative to $\left \langle {a_n} \right \rangle$ and $\left \langle {b_m} \right \rangle$.
Let:
- $\mathbf A = \left[{u; \left \langle {b_m} \right \rangle, \left \langle {a_n} \right \rangle}\right]$
- $\mathbf B = \left[{u; \left \langle {{b_m}'} \right \rangle, \left \langle {{a_n}'} \right \rangle}\right]$
Then:
- $\mathbf B = \mathbf Q^{-1} \mathbf A \mathbf P$
where:
- $\mathbf P$ is the matrix corresponding to the change of basis from $\left \langle {a_n} \right \rangle$ to $\left \langle {{a_n}'} \right \rangle$
- $\mathbf Q$ is the matrix corresponding to the change of basis from $\left \langle {b_m} \right \rangle$ to $\left \langle {{b_m}'} \right \rangle$.
Converse
The converse is also true:
Let $R$ be a commutative ring with unity.
Let $G$ be an $n$-dimensional unitary $R$-module, and let $\left \langle {a_n} \right \rangle$ be an ordered basis of $G$.
Let $H$ be an $m$-dimensional unitary $R$-module, and let $\left \langle {b_m} \right \rangle$ be an ordered basis of $H$.
Let $\mathbf A$ and $\mathbf B$ be $m \times n$ matrices over $R$.
Let there exist:
- an invertible matrix $\mathbf P$ of order $n$
- an invertible matrix $\mathbf Q$ of order $m$
such that $\mathbf B = \mathbf Q^{-1} \mathbf A \mathbf P$.
Then there exists a linear transformation $u: G \to H$, and ordered bases $\left \langle {{a_n}'} \right \rangle$ and $\left \langle {{b_m}'} \right \rangle$ of $G$ and $H$ respectively such that:
- $\mathbf A = \left[{u; \left \langle {b_m} \right \rangle, \left \langle {a_n} \right \rangle}\right]$
- $\mathbf B = \left[{u; \left \langle {{b_m}'} \right \rangle, \left \langle {{a_n}'} \right \rangle}\right]$
Corollary
Let $R$ be a commutative ring with unity.
Let $G$ be an $n$-dimensional unitary $R$-module, and let $\left \langle {a_n} \right \rangle$ and $\left \langle {{a_n}'} \right \rangle$ be ordered bases of $G$.
Let $u: G \to G$ be a linear operator on $G$.
Let:
- $\mathbf A = \left[{u; \left \langle {a_n} \right \rangle}\right]$
- $\mathbf B = \left[{u; \left \langle {{a_n}'} \right \rangle}\right]$
Then $\mathbf B = \mathbf P^{-1} \mathbf A \mathbf P$
where $\mathbf P$ is the matrix corresponding to the change of basis from $\left \langle {a_n} \right \rangle$ to $\left \langle {{a_n}'} \right \rangle$.
Corollary to Converse
Let $R$ be a commutative ring with unity.
Let $G$ be an $n$-dimensional unitary $R$-module, and let $\left \langle {a_n} \right \rangle$ and $\left \langle {{a_n}'} \right \rangle$ be an ordered basis of $G$.
Let $\mathbf A$ and $\mathbf B$ be square matrices of order $n$ over $R$.
Let there exist an invertible matrix $\mathbf P$ of order $n$ such that $\mathbf B = \mathbf P^{-1} \mathbf A \mathbf P$.
Then there exists a linear operator $u$ on $G$, and an ordered basis $\left \langle {{a_n}'} \right \rangle$ of $G$ such that:
- $\mathbf A = \left[{u; \left \langle {a_n} \right \rangle}\right]$
- $\mathbf B = \left[{u; \left \langle {{a_n}'} \right \rangle}\right]$.
Proof
We have $u = I_H \circ u \circ I_G$
and $\mathbf Q^{-1} = \left[{I_H; \left \langle {{b_m}'} \right \rangle, \left \langle {b_m} \right \rangle}\right]$.
Thus by Linear Transformations Isomorphic to Matrix Space:
\(\ds \mathbf Q^{-1} \mathbf A \mathbf P\) | \(=\) | \(\ds \left[{I_H; \left \langle { {b_m}'} \right \rangle, \left \langle {b_m} \right \rangle}\right] \left[{u; \left \langle {b_m} \right \rangle, \left \langle {a_n} \right \rangle}\right] \left[{I_G; \left \langle {a_n} \right \rangle, \left \langle { {a_n}'} \right \rangle}\right]\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left[{I_H \circ u \circ I_G; \left \langle { {b_m}'} \right \rangle, \left \langle { {a_n}'} \right \rangle}\right]\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf B\) |
$\blacksquare$
Proof of Converse
Let $\mathbf P = \left[{\alpha}\right]_n, \mathbf Q = \left[{\beta}\right]_m$.
Let:
- $\forall j \in \left[{1 \,.\,.\, n}\right]: {a_j}' = \displaystyle \sum_{i \mathop = 1}^n \alpha_{i j} a_i$
- $\forall j \in \left[{1 \,.\,.\, m}\right]: {b_j}' = \displaystyle \sum_{i \mathop = 1}^m \beta_{i j} b_i$
Then $\left \langle {{a_n}'} \right \rangle$ and $\left \langle {{b_m}'} \right \rangle$ are ordered bases of $G$ and $H$ respectively by Invertible Matrix Corresponds with Change of Basis.
Also we have:
- $\mathbf P$ is the matrix corresponding to the change in basis from $\left \langle {a_n} \right \rangle$ to $\left \langle {{a_n}'} \right \rangle$
- $\mathbf Q$ is the matrix corresponding to the change in basis from $\left \langle {b_m} \right \rangle$ to $\left \langle {{b_m}'} \right \rangle$
- so $\mathbf Q^{-1}$ is the matrix corresponding to the change in basis from $\left \langle {{b_m}'} \right \rangle$ to $\left \langle {b_m} \right \rangle$
Let $\mathcal L_R \left({G, H}\right)$ be the set of all linear transformations from $G$ to $H$.
By Linear Transformations Isomorphic to Matrix Space, there exists $u \in \mathcal L_R \left({G, H}\right)$ such that $\mathbf A = \left[{u; \left \langle {b_m} \right \rangle, \left \langle {a_n} \right \rangle}\right]$.
But then, by the main result, $\left[{u; \left \langle {{b_m}'} \right \rangle, \left \langle {{a_n}'} \right \rangle}\right] = \mathbf Q^{-1} \mathbf A \mathbf P = \mathbf B$.
$\blacksquare$
Proof of Corollary
Follows directly.
$\blacksquare$
Proof of Corollary to Converse
Follows directly.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): $\S 29$: Theorem $29.4, \ 29.5$ and corollaries