Matrix Entrywise Addition is Commutative/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map \MM {m, n}$ be a $m \times n$ matrix space over one of the standard number systems.

For $\mathbf A, \mathbf B \in \map \MM {m, n}$, let $\mathbf A + \mathbf B$ be defined as the matrix entrywise sum of $\mathbf A$ and $\mathbf B$.


The operation $+$ is commutative on $\map \MM {m, n}$.

That is:

$\mathbf A + \mathbf B = \mathbf B + \mathbf A$

for all $\mathbf A$ and $\mathbf B$ in $\map \MM {m, n}$.


Proof

Let $\mathbf A = \sqbrk a_{m n}$ and $\mathbf B = \sqbrk b_{m n}$ be matrices whose order is $m \times n$.

Then:

\(\ds \mathbf A + \mathbf B\) \(=\) \(\ds \sqbrk a_{m n} + \sqbrk b_{m n}\) Definition of $\mathbf A$ and $\mathbf B$
\(\ds \) \(=\) \(\ds \sqbrk {a + b}_{m n}\) Definition of Matrix Entrywise Addition
\(\ds \) \(=\) \(\ds \sqbrk {b + a}_{m n}\) Commutative Law of Addition
\(\ds \) \(=\) \(\ds \sqbrk b_{m n} + \sqbrk a_{m n}\) Definition of Matrix Entrywise Addition
\(\ds \) \(=\) \(\ds \mathbf B + \mathbf A\) Definition of $\mathbf A$ and $\mathbf B$

$\blacksquare$