# Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 2

## Examples of Use of Matrix is Row Equivalent to Echelon Matrix

Let $\mathbf A = \begin {bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ \end {bmatrix}$

This can be converted into the echelon form:

$\mathbf E = \begin {bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ \end {bmatrix}$

## Proof

Using Row Operation to Clear First Column of Matrix we obtain:

$\mathbf B = \begin {bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ \end {bmatrix}$

which is obtained by:

adding $-2$ of row $1$ to row $2$
adding $-3$ of row $1$ to row $3$.

Then we investigate the submatrix:

$\mathbf B' = \begin {bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ \end {bmatrix}$

Using Row Operation to Clear First Column of Matrix we obtain:

$\mathbf C' = \begin {bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ \end {bmatrix}$

which is obtained by adding $-1$ of row $1$ of $\mathbf B'$ to row $2$ of $\mathbf B'$.

Thus we are left with:

$\mathbf E = \begin {bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ \end {bmatrix}$

$\blacksquare$