Mean Value Theorem for Integrals/Proof 1
Jump to navigation
Jump to search
Theorem
Let $f$ be a continuous real function on the closed interval $\closedint a b$.
Then there exists a real number $k \in \closedint a b$ such that:
- $\ds \int_a^b \map f x \rd x = \map f k \paren {b - a}$
Proof
From Continuous Real Function is Darboux Integrable, $f$ is Darboux integrable on $\closedint a b$.
By the Extreme Value Theorem, there exist $m, M \in \closedint a b$ such that:
- $\ds \map f m = \min_{x \mathop \in \closedint a b} \map f x$
- $\ds \map f M = \max_{x \mathop \in \closedint a b} \map f x$
Then, from Upper and Lower Bounds of Integral:
- $\ds \map f m \paren {b - a} \le \int_a^b \map f x \rd x \le \map f M \paren {b - a}$
Dividing all terms by $\paren {b - a}$ gives:
- $\ds \map f m \le \frac 1 {b - a}\int_a^b \map f x \rd x \le \map f M$
By the Intermediate Value Theorem, there exists some $k \in \openint a b$ such that:
\(\ds \frac 1 {b - a} \int_a^b \map f x \rd x\) | \(=\) | \(\ds \map f k\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_a^b \map f x \rd x\) | \(=\) | \(\ds \map f k \paren {b - a}\) |
$\blacksquare$