Measure is Subadditive
Jump to navigation
Jump to search
Theorem
Let $\left({X, \Sigma, \mu}\right)$ be a measure space.
Then $\mu$ is subadditive, that is:
- $\forall E, F \in \Sigma: \mu \left({E \cup F}\right) \le \mu \left({E}\right) + \mu \left({F}\right)$
Corollary
Let $E_1, \ldots, E_n \in \Sigma$.
Then:
- $\ds \map \mu {\bigcup_{k \mathop = 1}^n E_k} \le \sum_{k \mathop = 1}^n \map \mu {E_k}$.
Proof
A measure is an additive function, and, by definition, nowhere negative.
So Additive Nowhere Negative Function is Subadditive applies.
Hence the result directly:
- $\mu \left({E \cup F}\right) \le \mu \left({E}\right) + \mu \left({F}\right)$
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $4.3 \ \text{(v)}$