Meet-Continuous and Distributive implies Shift Mapping Preserves Finite Suprema

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \vee, \wedge, \preceq}$ be a meet-continuous distributive complete lattice.

Let $x \in S$.

Let $f: S \to S$ be a mapping such that

$\forall y \in S: \map f y = x \wedge y$


Then

$f$ preserves finite suprema


Proof

Let $X$ be finite subset of $S$ such that:

$X$ admits a supremum

By definition of complete lattice:

$f \sqbrk X$ admits a supremum


We will prove the result by induction on the cardinality of $X$.


Basis Case

$\forall X \subseteq S: \card X = 0 \implies \map \sup {f \sqbrk X} = \map f {\sup X}$

where:

$\card X$ denotes the cardinality of $X$


Let $X \subseteq S$ such that:

$\card X = 0$

By Cardinality of Empty Set:

$X = \O$

By definition of image of set:

$f \sqbrk X = \O$

By definitions of bottom and smallest element:

$\bot \preceq x$

Thus:

\(\ds \map \sup {f \sqbrk X}\) \(=\) \(\ds \bot\) Supremum of Empty Set is Smallest Element
\(\ds \) \(=\) \(\ds x \wedge \bot\) Preceding iff Meet equals Less Operand
\(\ds \) \(=\) \(\ds x \wedge \sup X\) Supremum of Empty Set is Smallest Element
\(\ds \) \(=\) \(\ds \map f {\sup X}\) Definition of $f$

$\Box$


Induction Hypothesis

$\forall X \subseteq S: \card X = n \implies \map \sup {f \sqbrk X} = \map f {\sup X}$


Induction Step

$\forall X \subseteq S: \card X = n + 1 \implies \map \sup {f \sqbrk X} = \map f {\sup X}$

Let $X \subseteq S$ such that:

$\card X = n + 1$

Then $X = \set {x_1, \dots, x_n, x_{n + 1} }$.

Thus:

\(\ds \map \sup {f \sqbrk X}\) \(=\) \(\ds \map \sup {f \sqbrk {\set {x_1, \dots, x_n} \cup \set {x_{n + 1} } } }\) Union of Unordered Tuples
\(\ds \) \(=\) \(\ds \map \sup {f \sqbrk {\set {x_1, \dots, x_n} } \cup f \sqbrk {\set {x_{n + 1} } } }\) Image of Union under Mapping
\(\ds \) \(=\) \(\ds \map \sup {f \sqbrk {\set {x_1, \dots, x_n} } } \vee \map \sup {f \sqbrk {\set {x_{n + 1} } } }\) Supremum of Suprema
\(\ds \) \(=\) \(\ds \map f {\sup \set {x_1, \dots, x_n} } \vee \map \sup {f \sqbrk {\set {x_{n + 1} } } }\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \map f {\sup \set {x_1, \dots, x_n} } \vee \sup \set {\map f {x_{n + 1} } }\) Image of Singleton under Mapping
\(\ds \) \(=\) \(\ds \map f {\sup \set {x_1, \dots, x_n} } \vee \map f {x_{n + 1} }\) Supremum of Singleton
\(\ds \) \(=\) \(\ds \paren {x \wedge \sup \set {x_1, \dots, x_n} } \vee \paren {x \wedge x_{n + 1} }\) Definition of $f$
\(\ds \) \(=\) \(\ds x \wedge \paren {\sup \set {x_1, \dots, x_n} \vee x_{n + 1} }\) Definition of Distributive Lattice
\(\ds \) \(=\) \(\ds x \wedge \paren {\sup \set {x_1, \dots, x_n} \vee \sup \set {x_{n + 1} } }\) Supremum of Singleton
\(\ds \) \(=\) \(\ds x \wedge \sup X\) Supremum of Suprema
\(\ds \) \(=\) \(\ds \map f {\sup X}\) Definition of $f$

$\blacksquare$


Sources