Mellin Transform of Heaviside Step Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $c$ be a constant real number.

Let $\map {u_c} t$ be the Heaviside step function.

Let $\MM$ be the Mellin transform.

Then:

$\map {\MM \set {\map {u_c} t} } s = -\dfrac {c^s} s$

for $c > 0, \map \Re s < 0$.


Corollary

$\map {\MM \set {\map u {c - t} } } s = \dfrac {c^s} s$

for $c > 0, \map \Re s > 0$


Proof

Lemma

Let $t \in \R$.

Let $s \in \C$ with $\map \Re s < 0$.

Then:

$\ds \lim_{t \mathop \to +\infty} t^s = 0$


\(\ds \map {\MM \set {\map {u_c} t} } s\) \(=\) \(\ds \int_0^{\to +\infty} t^{s - 1} \map {u_c} t \rd t\) Definition of Mellin Transform
\(\ds \) \(=\) \(\ds \int_c^{\to +\infty} t^{s - 1} \rd t\) Definition of Heaviside Step Function: integrand is elsewhere zero
\(\ds \) \(=\) \(\ds \intlimits {\dfrac {t^s} s} c {+\infty}\) Primitive of Power
\(\ds \) \(=\) \(\ds 0 - \dfrac {c^s} s\) By Lemma
\(\ds \) \(=\) \(\ds - \dfrac {c^s} s\)

$\blacksquare$