# Min Operation is Associative

## Theorem

The Min operation is associative:

$\map \min {\map \min {x, y}, z} = \map \min {x, \map \min {y, z}}$

Thus we are justified in writing $\map \min {x, y, z}$.

## Proof

To simplify our notation:

Let $\map \min {x, y}$ be (temporarily) denoted $x \underline \vee y$.

There are the following cases to consider:

$(1): \quad x \le y \le z$
$(2): \quad x \le z \le y$
$(3): \quad y \le x \le z$
$(4): \quad y \le z \le x$
$(5): \quad z \le x \le y$
$(6): \quad z \le y \le x$

Taking each one in turn:

$(1): \quad$ Let $x \le y \le z$. Then:
 $\ds x \underline \vee \paren{y \underline \vee z}$ $=$ $\ds x \underline \vee y$ $\ds = x$ $\ds \paren{x \underline \vee y} \underline \vee z$ $=$ $\ds x \underline \vee z$ $\ds = x$

$(2): \quad$ Let $x \le z \le y$. Then:
 $\ds x \underline \vee \paren{y \underline \vee z}$ $=$ $\ds x \underline \vee z$ $\ds = x$ $\ds \paren{x \underline \vee y} \underline \vee z$ $=$ $\ds x \underline \vee z$ $\ds = x$

$(3): \quad$ Let $y \le x \le z$. Then:
 $\ds x \underline \vee \paren{y \underline \vee z}$ $=$ $\ds x \underline \vee y$ $\ds = y$ $\ds \paren{x \underline \vee y} \underline \vee z$ $=$ $\ds y \underline \vee z$ $\ds = y$

$(4): \quad$ Let $y \le z \le x$. Then:
 $\ds x \underline \vee \paren{y \underline \vee z}$ $=$ $\ds x \underline \vee y$ $\ds = y$ $\ds \paren{x \underline \vee y} \underline \vee z$ $=$ $\ds y \underline \vee z$ $\ds = y$

$(5): \quad$ Let $z \le x \le y$. Then:
 $\ds x \underline \vee \paren{y \underline \vee z}$ $=$ $\ds x \underline \vee z$ $\ds = z$ $\ds \paren{x \underline \vee y} \underline \vee z$ $=$ $\ds x \underline \vee z$ $\ds = z$

$(6): \quad$ Let $z \le y \le x$. Then:
 $\ds x \underline \vee \paren{y \underline \vee z}$ $=$ $\ds y \underline \vee z$ $\ds = z$ $\ds \paren{x \underline \vee y} \underline \vee z$ $=$ $\ds y \underline \vee z$ $\ds = z$

Thus in all cases it can be seen that the result holds.

$\blacksquare$