Mittag-Leffler Expansion for Hyperbolic Secant Function

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \pi \map \sech {\pi z} = 4 \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {2 n + 1} {\paren {2 n + 1}^2 + 4 z^2}$

where:

$z \in \C$ is not a half-integer multiple of $i$
$\sech$ is the hyperbolic secant function.


Proof

\(\ds \pi \map \sech {\pi z}\) \(=\) \(\ds \pi \map \sec {i \pi z}\) Hyperbolic Secant in terms of Secant
\(\ds \) \(=\) \(\ds 4 \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {2 n + 1} {\paren {2 n + 1}^2 - 4 \paren {i z}^2}\) Mittag-Leffler Expansion for Secant Function
\(\ds \) \(=\) \(\ds 4 \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {2 n + 1} {\paren {2 n + 1}^2 + 4 z^2}\) $i^2 = -1$

$\blacksquare$


Source of Name

This entry was named for Magnus Gustaf Mittag-Leffler.


Sources