Module on Cartesian Product is Module

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +_R, \times_R}$ be a ring.

Let $n \in \N_{>0}$.


Let $\struct {R^n, +, \times}_R$ be the $R$-module $R^n$.


Then $\struct {R^n, +, \times}_R$ is an $R$-module.


Proof 1

This is a special case of Direct Product of Modules is Module.

$\blacksquare$


Proof 2

This is a special case of the Module of All Mappings, where $S$ is the set $\closedint 1 n \subset \N_{>0}$.

$\blacksquare$


Proof 3

This is a special case of a Finite Direct Product of Modules is Module where each of the $G_k$ is the $R$-module $R$.

$\blacksquare$


Sources