Modulo Addition/Cayley Table/Modulo 4
Jump to navigation
Jump to search
Cayley Table for Addition Modulo $4$
The additive group of integers modulo $4$ can be described by showing its Cayley table:
$\quad \begin {array} {r|rrrr} \struct {\Z_4, +_4} & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \hline \eqclass 0 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 \\ \eqclass 1 4 & \eqclass 1 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 \\ \eqclass 2 4 & \eqclass 2 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 \\ \eqclass 3 4 & \eqclass 3 4 & \eqclass 0 4 & \eqclass 1 4 & \eqclass 2 4 \\ \end{array}$
It can also be presented:
$\quad \begin {array} {r|rrrr} +_4 & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 & 0 \\ 2 & 2 & 3 & 0 & 1 \\ 3 & 3 & 0 & 1 & 2 \\ \end {array}$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 6$: Isomorphisms of Algebraic Structures: Example $6.2$
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $1$: Integral Domains: $\S 6$. The Residue Classes
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $2$: Maps and relations on sets: Exercise $5$