Modulo Addition is Well-Defined/Proof 2
Jump to navigation
Jump to search
Theorem
Let $m \in \Z$ be an integer.
Let $\Z_m$ be the set of integers modulo $m$.
The modulo addition operation on $\Z_m$, defined by the rule:
- $\eqclass a m +_m \eqclass b m = \eqclass {a + b} m$
is a well-defined operation.
That is:
- If $a \equiv b \pmod m$ and $x \equiv y \pmod m$, then $a + x \equiv b + y \pmod m$.
Proof
The equivalence class $\eqclass a m$ is defined as:
- $\eqclass a m = \set {x \in \Z: x = a + k m: k \in \Z}$
That is, the set of all integers which differ from $a$ by an integer multiple of $m$.
Thus the notation for addition of two set of integers modulo $m$ is not usually $\eqclass a m +_m \eqclass b m$.
What is more normally seen is $a + b \pmod m$.
Using this notation:
\(\ds a\) | \(\equiv\) | \(\ds b\) | \(\ds \pmod m\) | |||||||||||
\(\, \ds \land \, \) | \(\ds c\) | \(\equiv\) | \(\ds d\) | \(\ds \pmod m\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a \bmod m\) | \(=\) | \(\ds b \bmod m\) | Definition of Congruence Modulo Integer | ||||||||||
\(\, \ds \land \, \) | \(\ds c \bmod m\) | \(=\) | \(\ds d \bmod m\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(=\) | \(\ds b + k_1 m\) | for some $k_1 \in \Z$ | ||||||||||
\(\, \ds \land \, \) | \(\ds c\) | \(=\) | \(\ds d + k_2 m\) | for some $k_2 \in \Z$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + c\) | \(=\) | \(\ds b + d + \paren {k_1 + k_2} m\) | Definition of Integer Addition | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a + c\) | \(\equiv\) | \(\ds b + d\) | \(\ds \pmod m\) | Definition of Modulo Addition |
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 2.6$. Algebra of congruences: $\text{(i)}$
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {II}$: New Structures from Old: $\S 11$: Quotient Structures: Example $11.2$
- 1968: Ian D. Macdonald: The Theory of Groups ... (previous) ... (next): $\S 1$: Some examples of groups: Example $1.10$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 18.4$: Congruence classes
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory: Exercise $17$