Modulo Arithmetic/Examples/Solutions to x^2 = x Modulo 6

From ProofWiki
Jump to navigation Jump to search

Example of Modulo Arithmetic

The equation:

$x^2 = x \pmod 6$

has solutions:

\(\ds x\) \(=\) \(\ds 0\)
\(\ds x\) \(=\) \(\ds 1\)
\(\ds x\) \(=\) \(\ds 3\)
\(\ds x\) \(=\) \(\ds 4\)


Proof

The Cayley table for multiplication modulo $6$ can be presented as:

$\begin{array} {r|rrrrrr} \times_6 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 \\ 2 & 0 & 2 & 4 & 0 & 2 & 4 \\ 3 & 0 & 3 & 0 & 3 & 0 & 3 \\ 4 & 0 & 4 & 2 & 0 & 4 & 2 \\ 5 & 0 & 5 & 4 & 3 & 2 & 1 \\ \end{array}$

The squares $x^2$ of each $x$ can be found on the main diagonal, where each element of $\Z_6$ can be inspected.


Checking each of these, we have:

\(\ds 0^2\) \(=\) \(\ds 0\)
\(\ds \) \(\equiv\) \(\ds 0\) \(\ds \pmod 6\)
\(\ds 1^2\) \(=\) \(\ds 1\)
\(\ds \) \(\equiv\) \(\ds 1\) \(\ds \pmod 6\)
\(\ds 2^2\) \(=\) \(\ds 4\)
\(\ds \) \(\equiv\) \(\ds 4\) \(\ds \pmod 6\)
\(\ds 3^2\) \(=\) \(\ds 9\)
\(\ds \) \(\equiv\) \(\ds 3\) \(\ds \pmod 6\)
\(\ds 4^2\) \(=\) \(\ds 16\)
\(\ds \) \(\equiv\) \(\ds 4\) \(\ds \pmod 6\)
\(\ds 5^2\) \(=\) \(\ds 25\)
\(\ds \) \(\equiv\) \(\ds 1\) \(\ds \pmod 6\)

$\blacksquare$


Sources