Modulo Multiplication is Well-Defined/Warning

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \R$ be a real number.

Let:

$a \equiv b \pmod z$

and:

$x \equiv y \pmod z$

where $a, b, x, y \in \R$.


Then it does not necessarily hold that:

$a x \equiv b y \pmod z$


Proof

\(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod m\)
\(\ds x\) \(\equiv\) \(\ds y\) \(\ds \pmod m\)
\(\ds \leadsto \ \ \) \(\ds a \bmod m\) \(=\) \(\ds b \bmod m\) Definition of Congruence
\(\ds x \bmod m\) \(=\) \(\ds y \bmod m\)
\(\ds \leadsto \ \ \) \(\ds \exists k_1 \in \Z: \, \) \(\ds a\) \(=\) \(\ds b + k_1 z\)
\(\ds \exists k_2 \in \Z: \, \) \(\ds x\) \(=\) \(\ds y + k_2 z\)
\(\ds \leadsto \ \ \) \(\ds a x\) \(=\) \(\ds \paren {b + k_1 z} \paren {y + k_2 z}\) Definition of Multiplication
\(\ds \) \(=\) \(\ds b y + b k_2 z + y k_1 z + k_1 k_2 z^2\) Integer Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds b y + \paren {b k_2 + y k_1 + k_1 k_2 z} z\)


But it is not necessarily the case that:

$b k_2 + y k_1 + k_1 k_2 z$

is an integer.

In fact, $b k_2 + y k_1 + k_1 k_2 z$ can only be guaranteed to be an integer if each of $b, y, z \in \Z$.

Hence $a b$ is not necessarily congruent to $x y$.

$\blacksquare$


Sources