Modulo Operation as Integer Difference by Quotient

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y, z \in \R$ be real numbers.

Let $y > 0$.

Let $0 \le z < y$.


Let:

$\dfrac {x - z} y = k$

for some integer $k$.


Then:

$z = x \bmod y$

where $\bmod$ denotes the modulo operation.


Proof

We have:

\(\ds \dfrac {x - z} y\) \(=\) \(\ds k\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds z - k y\)


We also have:

$0 \le z < y$

Hence:

$0 \le \dfrac z y < 1$

and so by definition of floor function:

$(2): \quad \floor {\dfrac z y} = 0$


Thus:

\(\ds x \bmod y\) \(=\) \(\ds x - y \floor {\dfrac x y}\) Definition of Modulo Operation: note that $y \ne 0$ by hypothesis
\(\ds \) \(=\) \(\ds \paren {z - k y} - y \floor {\dfrac {z - k y} y}\) from $(1)$
\(\ds \) \(=\) \(\ds z - k y - y \floor {\dfrac z y - k}\)
\(\ds \) \(=\) \(\ds z - k y - y \paren {\floor {\dfrac z y} - k}\) Floor of Number plus Integer
\(\ds \) \(=\) \(\ds z - k y + k y - y \floor {\dfrac z y}\)
\(\ds \) \(=\) \(\ds z - y \times 0\) from $(2)$


The result follows.

$\blacksquare$


Sources