Modulus in Terms of Conjugate
Jump to navigation
Jump to search
Theorem
Let $z = a + i b$ be a complex number.
Let $\cmod z$ be the modulus of $z$.
Let $\overline z$ be the conjugate of $z$.
Then:
- $\cmod z^2 = z \overline z$
Proof
Let $z = a + i b$.
Then:
\(\ds z \overline z\) | \(=\) | \(\ds a^2 + b^2\) | Product of Complex Number with Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2\) | Definition of Complex Modulus |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1.2$. The Algebraic Theory: $(1.9)$
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Subgroups
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.2$: Numbers, Powers, and Logarithms
- 1998: Yoav Peleg, Reuven Pnini and Elyahu Zaarur: Quantum Mechanics ... (previous) ... (next): Chapter $2$: Mathematical Background: $2.1$ The Complex Field $C$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): conjugate (of a complex number)