Moment Generating Function of Linear Combination of Independent Random Variables
Jump to navigation
Jump to search
Theorem
Let $X_1, X_2, \ldots, X_n$ be independent random variables.
Let $k_1, k_2, \ldots, k_n$ be real numbers.
Let:
- $\ds X = \sum_{i \mathop = 1}^n k_i X_i$
Let $M_{X_i}$ be the moment generating function of $X_i$ for $1 \le i \le n$.
Then:
- $\ds \map {M_X} t = \prod_{i \mathop = 1}^n \map {M_{X_i}} {k_i t}$
for all $t$ such that $M_{X_i}$ exists for all $1 \le i \le n$.
Proof
\(\ds \map {M_X} t\) | \(=\) | \(\ds \expect {\map \exp {t X} }\) | Definition of Moment Generating Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \expect {\map \exp {t \sum_{i \mathop = 1}^n k_i X_i} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \expect {\prod_{i \mathop = 1}^n \map \exp {t k_i X_i} }\) | Exponential of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{i \mathop = 1}^n \expect {\map \exp {t k_i X_i} }\) | Condition for Independence from Product of Expectations | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{i \mathop = 1}^n \map {M_{X_i} } {k_i t}\) | Definition of Moment Generating Function |
$\blacksquare$