Motion of Particle in Polar Coordinates
Theorem
Consider a particle $p$ of mass $m$ moving in the plane under the influence of a force $\mathbf F$.
Let the position of $p$ at time $t$ be given in polar coordinates as $\polar {r, \theta}$.
Let $\mathbf F$ be expressed as:
- $\mathbf F = F_r \mathbf u_r + F_\theta \mathbf u_\theta$
where:
- $\mathbf u_r$ is the unit vector in the direction of the radial coordinate of $p$
- $\mathbf u_\theta$ is the unit vector in the direction of the angular coordinate of $p$
- $F_r$ and $F_\theta$ are the magnitudes of the components of $\mathbf F$ in the directions of $\mathbf u_r$ and $\mathbf u_\theta$ respectively.
Then the second order ordinary differential equations governing the motion of $m$ under the force $\mathbf F$ are:
\(\ds F_\theta\) | \(=\) | \(\ds m \paren {r \dfrac {\d^2 \theta} {\d t^2} + 2 \dfrac {\d r} {\d t} \dfrac {\d \theta} {\d t} }\) | ||||||||||||
\(\ds F_r\) | \(=\) | \(\ds m \paren {\dfrac {\d^2 r} {\d t^2} - r \paren {\dfrac {\d \theta} {\d t} }^2}\) |
Proof
Let the radius vector $\mathbf r$ from the origin to $p$ be expressed as:
- $(1): \quad \mathbf r = r \mathbf u_r$
From Velocity Vector in Polar Coordinates, the velocity $\mathbf v$ of $p$ can be expressed in vector form as:
- $\mathbf v = r \dfrac {\d \theta} {\d t} \mathbf u_\theta + \dfrac {\d r} {\d t} \mathbf u_r$
From Acceleration Vector in Polar Coordinates, the the acceleration $\mathbf a$ of $p$ can be expressed as:
- $\mathbf a = \paren {r \dfrac {\d^2 \theta} {\d t^2} + 2 \dfrac {\d r} {\d t} \dfrac {\d \theta} {\d t} } \mathbf u_\theta + \paren {\dfrac {\d^2 r} {\d t^2} - r \paren {\dfrac {\d \theta} {\d t} }^2} \mathbf u_r$
We have:
- $\mathbf F = F_r \mathbf u_r + F_\theta \mathbf u_\theta$
and from Newton's Second Law of Motion:
- $\mathbf F = m \mathbf a$
Hence:
- $\mathbf F = m \paren {r \dfrac {\d^2 \theta} {\d t^2} + 2 \dfrac {\d r} {\d t} \dfrac {\d \theta} {\d t} } \mathbf u_\theta + m \paren {\dfrac {\d^2 r} {\d t^2} - r \paren {\dfrac {\d \theta} {\d t} }^2} \mathbf u_r$
Equating components:
\(\ds F_r \mathbf u_r\) | \(=\) | \(\ds m \paren {\dfrac {\d^2 r} {\d t^2} - r \paren {\dfrac {\d \theta} {\d t} }^2} \mathbf u_r\) | ||||||||||||
\(\ds F_\theta \mathbf u_\theta\) | \(=\) | \(\ds m \paren {r \dfrac {\d^2 \theta} {\d t^2} + 2 \dfrac {\d r} {\d t} \dfrac {\d \theta} {\d t} } \mathbf u_\theta\) |
Hence the result:
\(\ds F_\theta\) | \(=\) | \(\ds m \paren {r \dfrac {\d^2 \theta} {\d t^2} + 2 \dfrac {\d r} {\d t} \dfrac {\d \theta} {\d t} }\) | ||||||||||||
\(\ds F_r\) | \(=\) | \(\ds m \paren {\dfrac {\d^2 r} {\d t^2} - r \paren {\dfrac {\d \theta} {\d t} }^2}\) |
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3.21$: Newton's Law of Gravitation: $(7)$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.25$: Kepler's Laws and Newton's Law of Gravitation