Multiple of Sine plus Multiple of Cosine/Cosine Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \sin x + q \cos x = \sqrt {p^2 + q^2} \map \cos {x + \arctan \dfrac {-p} q}$


Proof

Let it be assumed that $p \sin x + q \cos x$ can be expressed in the form $M \map \cos {x + \phi}$.


Then:

\(\ds p \sin x + q \cos x\) \(=\) \(\ds M \map \cos {x + \phi}\)
\(\ds \leadsto \ \ \) \(\ds \frac p M \sin x + \frac q M \cos x\) \(=\) \(\ds \map \cos {x + \phi}\)
\(\ds \) \(=\) \(\ds \cos x \cos \phi - \sin x \sin \phi\) Cosine of Sum
\(\ds \leadsto \ \ \) \(\ds \sin x \sin \phi\) \(=\) \(\ds \frac {-p} M \sin x\) equating terms in $\sin x$
\(\ds \cos x \cos \phi\) \(=\) \(\ds \frac q M \cos x\) and $\cos x$
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \sin \phi\) \(=\) \(\ds \frac {-p} M\)
\(\text {(2)}: \quad\) \(\ds \cos \phi\) \(=\) \(\ds \frac q M\)
\(\ds \leadsto \ \ \) \(\ds \sin^2 \phi + \cos^2 \phi\) \(=\) \(\ds \paren {\frac {-p} M}^2 + \paren {\frac q M}^2\) squaring and adding $(1)$ and $(2)$
\(\ds \leadsto \ \ \) \(\ds 1\) \(=\) \(\ds \frac {p^2 + q^2} {M^2}\)
\(\ds \leadsto \ \ \) \(\ds \sqrt {p^2 + q^2}\) \(=\) \(\ds M\)


Then:

\(\ds \tan \phi\) \(=\) \(\ds \frac {\sin \phi} {\cos \phi}\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \frac {-p / M} {q / M}\) from $(1)$ and $(2)$
\(\ds \) \(=\) \(\ds \frac {-p} q\) simplifying


Hence the result.

$\blacksquare$