Multiplication of Cross-Relation Equivalence Classes on Natural Numbers is Well-Defined

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\N, +}$ be the semigroup of natural numbers under addition.

Let $\struct {\N \times \N, \oplus}$ be the (external) direct product of $\struct {\N, +}$ with itself, where $\oplus$ is the operation on $\N \times \N$ induced by $+$ on $\N$.


Let $\boxtimes$ be the cross-relation defined on $\N \times \N$ by:

$\tuple {x_1, y_1} \boxtimes \tuple {x_2, y_2} \iff x_1 + y_2 = x_2 + y_1$


Let $\eqclass {x, y} {}$ denote the equivalence class of $\tuple {x, y}$ under $\boxtimes$.


Let $\otimes$ be the binary operation defined on these equivalence classes as:

$\forall \eqclass {a, b} {}, \eqclass {c, d} {} \in \N \times \N: \eqclass {a, b} {} \otimes \eqclass {c, d} {} = \eqclass {\tuple {a \cdot c} + \tuple {b \cdot d}, \tuple {a \cdot d} + \tuple {b \cdot c} } {}$

where $a \cdot c$ denotes natural number multiplication between $a$ and $c$.



The operation $\otimes$ on these equivalence classes is well-defined, in the sense that:

\(\ds \eqclass {a_1, b_1} {}\) \(=\) \(\ds \eqclass {a_2, b_2} {}\)
\(\ds \eqclass {c_1, d_1} {}\) \(=\) \(\ds \eqclass {c_2, d_2} {}\)
\(\ds \leadsto \ \ \) \(\ds \eqclass {a_1, b_1} {} \otimes \eqclass {c_1, d_1} {}\) \(=\) \(\ds \eqclass {a_2, b_2} {} \otimes \eqclass {c_2, d_2} {}\)


Proof

Let $\eqclass {a_1, b_1} {}, \eqclass {a_2, b_2} {}, \eqclass {c_1, d_1} {}, \eqclass {c_2, d_2} {}$ be $\boxtimes$-equivalence classes such that $\eqclass {a_1, b_1} {} = \eqclass {a_2, b_2} {}$ and $\eqclass {c_1, d_1} {} = \eqclass {c_2, d_2} {}$.


Then:

\(\ds \eqclass {a_1, b_1} {}\) \(=\) \(\ds \eqclass {a_2, b_2} {}\) Definition of Operation Induced by Direct Product
\(\, \ds \land \, \) \(\ds \eqclass {c_1, d_1} {}\) \(=\) \(\ds \eqclass {c_2, d_2} {}\) Definition of Operation Induced by Direct Product
\(\ds \leadstoandfrom \ \ \) \(\ds a_1 + b_2\) \(=\) \(\ds a_2 + b_1\) Definition of Cross-Relation
\(\, \ds \land \, \) \(\ds c_1 + d_2\) \(=\) \(\ds c_2 + d_1\) Definition of Cross-Relation


Both $+$ and $\times$ are commutative and associative on $\N$. Thus:

\(\ds \paren {a_1 \cdot c_1 + b_1 \cdot d_1 + a_2 \cdot d_2 + b_2 \cdot c_2}\) \(+\) \(\ds \paren {a_2 \cdot c_1 + b_2 \cdot c_1 + a_2 \cdot d_1 + b_2 \cdot d_1}\)
\(\, \ds = \, \) \(\ds \paren {a_1 + b_2} \cdot c_1 + \paren {b_1 + a_2} \cdot d_1\) \(+\) \(\ds a_2 \cdot \paren {c_1 + d_2} + b_2 \cdot \paren {d_1 + c_2}\)
\(\, \ds = \, \) \(\ds \paren {b_1 + a_2} \cdot c_1 + \paren {a_1 + b_2} \cdot d_1\) \(+\) \(\ds a_2 \cdot \paren {d_1 + c_2} + b_2 \cdot \paren {c_1 + d_2}\) as $a_1 + b_2 = b_1 + a_2, c_1 + d_2 = d_1 + c_2$
\(\, \ds = \, \) \(\ds b_1 \cdot c_1 + a_2 \cdot c_1 + a_1 \cdot b_2 + a_1 \cdot d_1\) \(+\) \(\ds a_2 \cdot d_1 + a_2 \cdot c_2 + b_2 \cdot c_1 + b_2 \cdot d_2\)
\(\, \ds = \, \) \(\ds \paren {a_1 \cdot d_1 + b_1 \cdot c_1 + a_2 \cdot c_2 + b_2 \cdot d_2}\) \(+\) \(\ds \paren {a_2 \cdot c_1 + b_2 \cdot c_1 + a_2 \cdot d_1 + b_2 \cdot d_1}\)


So we have $a_1 \cdot c_1 + b_1 \cdot d_1 + a_2 \cdot d_2 + b_2 \cdot c_2 = a_1 \cdot d_1 + b_1 \cdot c_1 + a_2 \cdot c_2 + b_2 \cdot d_2$ and so, by the definition of $\boxtimes$, we have:



$\eqclass {a_1 \cdot c_1 + b_1 \cdot d_1, a_1 \cdot d_1 + b_1 \cdot c_1} {} = \eqclass {a_2 \cdot c_2 + b_2 \cdot d_2, a_2 \cdot d_2 + b_2 \cdot c_2} {}$


So, by the definition of integer multiplication, this leads to:

$\eqclass {a_1, b_1} {} \otimes \eqclass {c_1, d_1} {} = \eqclass {a_2, b_2} {} \otimes \eqclass {c_2, d_2} {}$


Thus integer multiplication has been shown to be well-defined.

$\blacksquare$



Sources