Multiplication of Cuts Distributes over Addition
Theorem
Let $\alpha$, $\beta$ and $\gamma$ be cuts.
Let:
- $\alpha + \beta$ denote the sum of $\alpha$ and $\beta$.
- $\alpha \beta$ denote the product of $\alpha$ and $\beta$.
Then:
- $\alpha \paren {\beta + \gamma} = \alpha \beta + \alpha \gamma$
Proof
By definition, we have that:
- $\alpha \beta := \begin {cases}
\size \alpha \, \size \beta & : \alpha \ge 0^*, \beta \ge 0^* \\ -\paren {\size \alpha \, \size \beta} & : \alpha < 0^*, \beta \ge 0^* \\ -\paren {\size \alpha \, \size \beta} & : \alpha \ge 0^*, \beta < 0^* \\ \size \alpha \, \size \beta & : \alpha < 0^*, \beta < 0^* \end {cases}$ where:
- $\size \alpha$ denotes the absolute value of $\alpha$
- $0^*$ denotes the rational cut associated with the (rational) number $0$
- $\ge$ denotes the ordering on cuts.
Let $\alpha \ge 0^*$, $\beta \ge 0^*$ and $\gamma \ge 0^*$.
$\alpha \paren {\beta + \gamma}$ is the set of all rational numbers $s$ of the form:
- $s = p \paren {q + r}$
such that:
- $s < 0$
or:
- $p \in \alpha$, $q \in \beta$ and $r \in \gamma$.
$\alpha \beta + \alpha \gamma$ is the set of all rational numbers $s$ of the form:
- $s = p q + p r$
such that:
- $s < 0$
or:
- $p \in \alpha$, $q \in \beta$ and $r \in \gamma$.
From Rational Multiplication Distributes over Addition: $p \paren {q + r} = p q + p r$
and the result follows.
$\blacksquare$
Sources
- 1964: Walter Rudin: Principles of Mathematical Analysis (2nd ed.) ... (previous) ... (next): Chapter $1$: The Real and Complex Number Systems: Dedekind Cuts: $1.26$. Theorem $\text {(c)}$