# Multiplicative Group of Reduced Residues Modulo 7 is Cyclic

## Theorem

Let $\struct {\Z'_7, \times_7}$ denote the multiplicative group of reduced residues modulo $7$.

Then $\struct {\Z'_7, \times_7}$ is cyclic.

## Proof

From Reduced Residue System under Multiplication forms Abelian Groupâ€Ž it is noted that $\struct {\Z'_7, \times_7}$ is a group.

It remains to be shown that $\struct {\Z'_7, \times_7}$ is cyclic.

It will be demonstrated that:

$\gen {\eqclass 3 7} = \struct {\Z'_7, \times_7}$

That is, that $\eqclass 3 7$ is a generator of $\struct {\Z'_7, \times_7}$.

We note that $\eqclass 1 7$ is the identity element of $\struct {\Z'_7, \times_7}$.

Thus successive powers of $\eqclass 3 7$ are taken, until $n \in \Z$ is found such that $\eqclass 3 7^n = \eqclass 1 7$:

 $\displaystyle \eqclass 3 7^2$ $=$ $\displaystyle \eqclass {3 \times 3} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass 9 7$ $\displaystyle$ $=$ $\displaystyle \eqclass 2 7$ $\displaystyle \eqclass 3 7^3$ $=$ $\displaystyle \eqclass 3 7^2 \times \eqclass 3 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {2 \times 3} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass 6 7$ $\displaystyle \eqclass 3 7^4$ $=$ $\displaystyle \eqclass 3 7^3 \times \eqclass 3 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {6 \times 3} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {18} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass 4 7$ $\displaystyle \eqclass 3 7^5$ $=$ $\displaystyle \eqclass 3 7^4 \times \eqclass 3 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {4 \times 3} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {12} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass 5 7$ $\displaystyle \eqclass 3 7^6$ $=$ $\displaystyle \eqclass 3 7^5 \times \eqclass 3 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {5 \times 3} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass {15} 7$ $\displaystyle$ $=$ $\displaystyle \eqclass 1 7$

All elements of $\struct {\Z'_7, \times_7}$ are seen to be in $\gen {\eqclass 3 7}$.

Hence the result by definition of cyclic group.

$\blacksquare$