Natural Basis of Product Topology/Lemma 3

From ProofWiki
Jump to navigation Jump to search

Lemma for Natural Basis of Product Topology

Let $\family {\struct {X_i, \tau_i} }_{i \mathop \in I}$ be an indexed family of topological spaces where $I$ is an arbitrary index set.

Let $X$ be the cartesian product of $\family {X_i}_{i \mathop \in I}$:

$\ds X := \prod_{i \mathop \in I} X_i$


Let $\BB$ be the set of cartesian products of the form $\ds \prod_{i \mathop \in I} U_i$ where:

for all $i \in I : U_i \in \tau_i$
for all but finitely many indices $i : U_i = X_i$


Then:

$\ds \forall B \in \BB : B = \bigcap_{j \mathop \in J} \pr_j^{-1} \sqbrk {U_j}$

where:

$\ds B = \prod_{i \mathop \in I} U_i$
$J = \set{j \in I : U_i \ne X_i}$ is finite.


Proof

Let $B \in \BB$.


Let $B = \ds \prod_{i \mathop \in I} U_i$

where

for all $i \in I : U_i \in \tau_i$
for all but finitely many indices $i : U_i = X_i$


Let $J = \set{j \in I : U_i \ne X_i}$.

Then $J$ is a finite set and:

$\forall i \in I \setminus J : U_i = X_i$


For all $j \in J$, let:

$\pr_j^{-1} \sqbrk {U_j} = \ds \prod_{i \mathop \in I} V^j_i$

where:

$V^j_j = U_j$
$\forall i \ne j : V^j_i = X_i$

Then:

\(\ds \bigcap_{j \mathop \in J} \pr_j^{-1} \sqbrk {U_j}\) \(=\) \(\ds \bigcap_{j \mathop \in J} \paren {\prod_{i \mathop \in I} V^j_i}\)
\(\ds \) \(=\) \(\ds \prod_{i \mathop \in I} \paren {\bigcap_{j \mathop \in J} V^j_i}\) General Case of Cartesian Product of Intersections


To complete the proof it remains to show that:

$\forall i \in I : U_i = \bigcap_{j \mathop \in J} V^j_i$

Let $i \in I$.


Case: $i \not \in J$

Let $i \not \in J$.

Then:

\(\ds \bigcap_{j \mathop \in J} V^j_i\) \(=\) \(\ds \bigcap_{j \mathop \in J} X_i\) as $\forall j \in J : i \ne j$
\(\ds \) \(=\) \(\ds X_i\) Set Intersection is Idempotent
\(\ds \) \(=\) \(\ds U_i\) Definition of $J$

$\Box$


Case: $i \in J$

Let $i \in J$.

Then:

\(\ds \bigcap_{j \mathop \in J} V^j_i\) \(=\) \(\ds V^i_i \cap \bigcap_{j \mathop \in J \mathop \setminus i} V^j_i\)
\(\ds \) \(=\) \(\ds U_i \cap \bigcap_{j \mathop \in J \mathop \setminus i} V^j_i\) Definition of $V^i_i$
\(\ds \) \(=\) \(\ds U_i \cap \bigcap_{j \mathop \in J \mathop \setminus i} X_i\) Definition of $V^j_i$ when $j \ne i$
\(\ds \) \(=\) \(\ds U_i \cap X_i\) Set Intersection is Idempotent
\(\ds \) \(=\) \(\ds U_i\) Intersection with Subset is Subset

$\Box$

Thus:

$\ds \forall i \in I : U_i = \bigcap_{j \mathop \in J} V^j_i$

The result follows.

$\blacksquare$