Natural Logarithm of 1 is 0/Proof 3
Jump to navigation
Jump to search
Theorem
- $\ln 1 = 0$
Proof
We use the definition of the natural logarithm as the limit of a sequence:
- $\ds \ln x = \lim_{n \mathop \to \infty} n \paren {\sqrt [n] x - 1}$
Then:
\(\ds \ln 1\) | \(=\) | \(\ds \lim_{n \mathop \to \infty} n \paren {\sqrt [n] 1 - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} n \times 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to \infty} 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$