Natural Logarithm of 2 is Greater than One Half

From ProofWiki
Jump to navigation Jump to search

Lemma

$\ln 2 \ge \dfrac 1 2$

where $\ln$ denotes the natural logarithm function.


Proof 1

Let $f: \R_{>0} \to \R$ be the real function defined as:

$\forall x \in \R_{>0}: \map f x = \dfrac 1 x$

From Real Rational Function is Continuous, $\map f x$ is a continuous real function, in particular on the closed interval $\closedint a b$.


Hence the Mean Value Theorem for Integrals can be applied:

There exists some $k \in \closedint 1 2$ such that:

\(\ds \int_1^2 \map f x \rd x\) \(=\) \(\ds \map f k \paren {2 - 1}\)
\(\ds \leadsto \ \ \) \(\ds \int_1^2 \frac 1 x \rd x\) \(=\) \(\ds \frac 1 k \paren {2 - 1}\) substituting $\dfrac 1 x$ for $\map f x$
\(\ds \leadsto \ \ \) \(\ds \ln 2 - \ln 1\) \(=\) \(\ds \frac 1 k \paren {2 - 1}\) Definition 1 of Natural Logarithm
\(\ds \leadsto \ \ \) \(\ds \ln 2\) \(=\) \(\ds \frac 1 k\) Logarithm of $1$ is $0$


Thus:

\(\ds 1\) \(\le\) \(\, \ds k \, \) \(\, \ds \le \, \) \(\ds 2\)
\(\ds \leadsto \ \ \) \(\ds 1^{-1}\) \(\ge\) \(\, \ds k^{-1} \, \) \(\, \ds \ge \, \) \(\ds 2^{-1}\) Ordering of Reciprocals
\(\ds \leadsto \ \ \) \(\ds 1\) \(\ge\) \(\, \ds \ln 2 \, \) \(\, \ds \ge \, \) \(\ds \frac 1 2\)

$\blacksquare$


Proof 2

\(\ds 1 - \frac 1 x\) \(\le\) \(\ds \ln x\) Lower Bound of Natural Logarithm
\(\ds \leadsto \ \ \) \(\ds \frac 1 2\) \(\le\) \(\ds \ln 2\) letting $x = 2$

$\blacksquare$


Also see


Sources